
NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A268 523

OTIC

IAUG25.199311

THESIS W

A PROTOCOL VALIDATOR FOR THE SCM AND CFSM
MODELS

by

Zeki Bulent Bulbul

June 1993

Thesis Advisor: G. M. Lundy

Approved for public release; distribution is unlimited.

93-1972593"8 24 10 6 ic U

UNCLASSIFIED
SECURITY CLASSFICATION OF THIS PAGE

REPWRT DOCUMENTATION PAGE
tI& REPOHT SECURITY CLASSIFICATION UNCLASSIFIED lb. RESTRICTIVE MARKINGS

2a SECURITY CL IFICATION AUTHORITY 3. DlSTRIBUTIO/AVAILABILITY OF REPORT

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release;
distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

" NAME OF gEt3FORMOIG ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
omputer cience Dept. (if appfcabde) Naval Postgraduate School

Naval Postgraduate School CS

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

Sa. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

Sc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNT
ELEMENT NO. NO. NO. ACCESSION NO

11. TITLE (Include Secuity Classification)
A PROTOCOL VALIDATOR FOR THE SCM AND CFSM MODELS

ff JRf r , R(S)

TYPI 1E.R 3.TIECVRD[15. PAGE QOUNTaster S s 13b FM TO 14. DATE OF REPORT (Year, Mronth, Day)

e S FROM 09/92• TO.06/93 IJune 1993 143
16. SUPPLEMENTARY NOTATION The views expressed in his thesis are those of the author and-do not reflect the
official policy or position of the Department of Defense or the United States Government.

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Systems of Communicating Machines, Communicating Finite State
Machines, SCM, CFSM, Protool Verification.

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This thesis introduces and describes a software tool called Mushroom which automates the analysis of network protocols spec-
ified by the Systems of Communicating Machines (SCM) and the Communicating Finite State Machines (CFSM) models. SCM
is a formal model for the specification, verification, and testing of communication protocols. This model was originally devel-
oped to improve the CFSM model which is a simpler and earlier Formal Description Technique (FDT).

The program is developed as two separate programs in the Ada programming language. The first program automates either
the system state analysis (Smart Mushroom), or the full global analysis (Big Mushroom) for a protocol specified by the SCM
model. The second program called Simple Mushroom, automates the global reachability analysis for the CFSM model.

Mushroom greatly facilitates the use of these models for protocol design and analysis. The run time and memory efficiency
of a previous program was improved to allow the analysis of larger and morm complex protocols. The program was also extended
to accept up to eight machines (processes) in the protocol specification. The user interface of the program has also been im-
proved.

Mushroom has been used to verify some well known protocols specified by the SCM and CFSM models such as the token
bus protocol, Go Back N and Lap-B data link control protocol.

20. DISTRIBUTRW3NAVAILABILITY OF ABS•TRACT 21. ABSTRACT SECURITY CLASIFICATION

UNCLASSIFIED/UNLIMITED [] SAME AS RPT. [] DTIC USERS UNCLASSIFIED
tI O RESNSlBLE INDIVIDUAL 22b TEL H Area Code) 1L~. Lu.M LUny (0)T••••n r LC .ESMO

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsoles UNCLASSIFIED
i

Approved for public release; distribution is unlimited

A Protocol Validatorfor the SCM and CFSM Models

by
Zeki Bulent Bulbul

LTJG, Turkish Navy
B.S., Turkish Naval Academy, 1987

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1993

Author:
Zeki Bulent Bulbul

Approved By:
G. M. Lundy, ThessA

-Tak Shing, eodRar

Q6Chfrman,

Department of Computer Science

ii

ABSTRACT

This thesis introduces and describes a software tool called Mushroom which

automates the analysis of network protocols specified by the Systems of Communicating

Machines (SCM) and the Communicating Finite State Machines (CFSM) models. SCM is

a formal model for the specification, verification, and testing of communication protocols.

This model was originally developed to improve the CFSM model which is a simpler and

earlier Formal Description Technique (FDT).

The program is developed as two separate programs in the Ada programming

language. The first program automates either the system state analysis (Smart Mushroom),

or the full global analysis (Big Mushroom) for a protocol specified by the SCM model. The

second program called Simple Mushroom, automates the global reachability analysis for

the CFSM model.

Mushroom greatly facilitates the use of these models for protocol design and analysis.

The run time and memory efficiency of a previous program was improved to allow the

analysis of larger and more complex protocols. The program was also extended to accept

up to eight machines (processes) in the protocol specification. The user interface of the

program has also been improved.

Mushroom has been used to verify some well known protocols specified by the SCM

and CFSM models such as the token bus protocol, Go Back N and Lap-B data link control

protocol.

looesslon For

IDT:c T:. F 0--
U~:.uri,t'ed El

iii I Av',,ji3 1111.y Codes

&.k• LJ•,.., 3...e .di

IDrIC QUALMT I~rCrh 3 i]_____

TABLE OF CONTENTS

1. INTRODUCTION .. 1

A. MOTIVATION .. 1

B. SCOPE OF THE THESIS .. 2

C. ORGANIZATION .. 2

II. BACKGROUND OF MODELS .. 4

A. COMMUNICATING FINITE STATE MACHINES 4

I. M odel Definition ... 4

2. An Example of Protocol Specification and Analysis Using CFSM 7

3. Sum m ary ... 9

B. SYSTEMS OF COMMUNICATING MACHINES 10

1. M odel Definition .. 10

2. Algorithm: System State Analysis 12

3. An Example of Protocol Specification and Analysis Using SCM 13

4. Sum m ary .. 16

III. SIMPLE MUSHROOM: A PROGRAM FOR AUTOMATING

CFSM REACHABILITY ANALYSIS 17

A. PROGRAM STRUCTURE 18

B. IN PUT .. 20

C. REACHABILITY ANALYSIS 22

D . OUTPUT .. 25

IV. SMART AND BIG MUSHROOM: A PROGRAM FOR

AUTOMATING SCM REACHABILITY ANALYSIS 28

A. PROGRAM STRUCTURE 28

iv

B. INPUT .. 31

I. Finite State M achines 31

2. Variable Definitions 33

3. Predicate-Action Table 34

C. REACHABILITY ANALYSIS 39

1. Global Reachability Analysis 39

2. System state analysis 41

D. OUTPUT .. 42

V. EXAMPLES FOR USING THE MUSHROOM PROGRAM 48

A. CFSM MODEL ... 48

1. A Simple Four Machine Protocol 48

2. Analysis of Information Transfer Phase of the LAP-B Protocol 52

B. SCM M ODEL .. 60

1. Go Back N .. 60

2. Token Bus ... 64

VI. CONCLUSIONS AND FURTHER RESEARCH POSSIBILITIES 70

APPENDIX A (LAP-B Protocol Information Transfer Phase) 74

FSM Text File ... 74

Program Output .. 77

APPENDIX B (Go back N Window Size of 10) 80

FSM Text File ... 80

Variable Definitions .. 82

Predicate Action Table .. 83

O utput form at ... 88

Program Output(System State Analysis) 89

APPENDIX C (Token Bus Protocol) 101

V

FSM Text File .. 101

Variable Definitions ... 103

Predicate Action Table ... 109

Output Form at .. 117

Program Output (System State Analysis) 118

Program Output (Global Reachability Analysis) 127

REFERENCES ... 133

INITIAL DISTRIBUTION LIST ... 135

vi

I. INTRODUCTION

A. MOTIVATION

In the last decade increasing complexity in computer communication systems have

created a growing demand for formal techniques to specify, design, verify and test

protocols. In order to have a clear understanding of the protocols, both for the protocol

designer and implementor, it is essential to have a formal protocol specification.

There are a large number of formal techniques available for modeling protocols. Most

of these methods can be placed into one of the following general classifications [Ref. 11:

communicating finite state machines, Petri nets, programming languages and hybrids.

Some models that have found most interest and chosen for standardization are ESTELLE,

LOTOS and SDL. Each of these has its own pros and cons.

Systems of communicating machines (SCM) is also a formally defined model for

specification, analysis and testing of protocols that is defined in [Ref. 2]. This model uses

a combination of finite state machines and variables, which may be local to a single

machine or shared by two or more machines, so it can be classified in the models known as

"extended finite-state machines." The main goal of the SCM model was to improve the

well-known simpler Communicating Finite-State Machines (CFSM) model. The SCM

model has been used to specify and analyze several protocols [Ref. 31, [Ref. 41, [Ref. 51,

[Ref. 6], [Ref. 7]. Analysis of protocols specified with this model can be executed using a

method called system state analysis. This analysis is similar to global reachability analysis,

but generates a subset of all reachable states. Sometimes this subset is sufficient to verify

the protocol. In some cases system state analysis is not sufficient for protocol analysis, and

I

global analysis is needed. However, it is possible to automate the system state analysis and

global analysis based on the SCM model.

Several tools exist for the design and verification of protocols. These tools are very

important for increasing the usefulness of the formal description techniques (FDT).

While there is no "perfect" formal specification technique, there is still room for more

work to understand the advantages of different formal models and develop better tools to

increase the utilization of these models.

B. SCOPE OF THE THESIS

The goal of the thesis is to present a software tool, called mushroom that automates

the reachability analysis of protocols formally specified using CFSM and SCM models.

The name mushroom was chosen as a symbol of something that starts out relatively small

(specification) and gets much bigger quickly (analysis). An earlier version of the program

[Ref. 81 was capable of generating reachability analysis for the protocols consisting of only

two machines. This thesis expands on this earlier work and is capable of analyzing

protocols that has any number of machines from two to eight. In addition, the user interface

for the program has also been improved. The program was tested against results of several

previous works and has confirmed their results. It is also believed that this program will

help to solve some problems concerning the SCM model.

C. ORGANIZATION

The thesis has six chapters. Chapter II reviews the Communicating Finite State

Machines (CFSM) and Systems of Communicating Machines (SCM) models. In Chapter

11, a program called simple mushroom, which automates the global reachability analysis

based on CFSM model, is described. Chapter IV describes a program that automates the

system state analysis (smart mushroom), or the full global analysis (big mushroom) for

2

a protocol specified formally using the SCM model. In Chapter V, some examples of the

use of the program are given. Chapter VI concludes the thesis with a research review and

suggestions for future work.

3

II. BACKGROUND OF MODELS

A. COMMUNACATING FINITE STATE MACHINES

Communicating finite state machine (CFSM) model is a simple model and perhaps the

earliest FDT. In this model, each machine irt the network is modeled as a finite automaton

or finite state machine (FSM), with communication channels between pairs of machines

modeled as one-way, infinite length FIFO queues. There is a great deal of literature on this

model [Ref. 9] [Ref. 101 [Ref. 1 1]. The model is defined for an arbitrary number of

machines; however, for simplicity, a two machine model (shown in Figure 1) will be

presented here.

Machine 1 Machine 2

Figure 1: CFSM, 2 machine model representation

1. Model Definition

This section defines the CFSM model [Ref. 12] and provides a simple protocol

specification and analysis to clarify the definition.

A communicating machine M is a finite, directed labeled graph with two types of

edges, sending and receiving. A sending (receiving) edge is labeled '-g' ('+g') for some

message g, taken from a finite set G of messages. One of the nodes in M is identified as the

initial node, and each node is reachable from the initial node by some directed path. A node

in M whose outgoing edges are all sending (receiving) edges is a sending (receiving) node;

otherwise the node is a mixed node. If the outgoing edges of each node in M have distinct

4

labels, then M is deterministic; otherwise M is nondeterministic. The nodes of M are often

referred to as states; these two terms will be used interchangeably throughout this thesis.

Let M and N be two communicating machines having the same set G of messages;

the pair (M N) is a network. A global state of this network is a four tuple [rm,cm,n,cnl, where

m and ,, are nodes (states) from M and N, and cm and cn are strings from the set G of

messages. Intuitively, the global state [m,cm,n,cn] means that the machines M and N have

reached states m and n, and the communication channels contain the strings cm and cn of

messages, where cm denotes the messages sent from M to N in channel CM, and c. denotes

the messages sent from N to M in channel CN. In the case of say k number of machines

where k > 2 the global state can be represented as

[mi,q]2,qi3,m2,q21,........m3,q3.,q32 mk,qkl,qk2 I where mis are the nodes of

machines Mi and qij contains the messages sent from Mi to Mj. Subscripts i and j ranges

from L..k and i *j.

The initial global state of (MN) is [mo,E,no,E], where m0 and no are the initial

states of M and N, and E is the empty string.

The network progresses as transitions are taken in either M or N. Each transition

consists of a state change in one of the machines, and either the addition of a message to

the end of one channel (sending transition) or the deletion of a message from the front of

one channel (receiving transition).

A sending transition in M (N) adds a message to the end of channel CM (CN); a

receiving transition in M (N) removes a message from the front of channel Cj4 (CM).

Suppose +g is a receiving transition from state i to j in machine M (N). The

transition can be executed if and only if M (N) is in state i and the message g is at the front

5

of the channel CN (CM). The execution takes zero time. After its execution, machine M (N)

is in state j, and the message g has been removed from the channel CN (CM).

Similarly, suppose -g is a sending transition from state i to j in M (N). The

transition can be executed if and only if M (N) is in state i. Afterwards, g appears on the end

of the outgoing channel, and the machine has transitioned to state j.

Suppose sl= [m,ci,n,cj] is a global state of (M,N). State s2follows s, if there is a

transition (in M or N) which can be executed in s, if there is a sequence of states si,si+1, .

.,si+p such that si follows sssi+1 follows si, and so on, and s2 follows si+p. A state s is

reachable if it is reachable from the initial state.

The communication of a network(M,N) is bounded if, for every reachable state

[m,cm,n,cnl there is a nonnegative integer k such that ICml < k and IcnI < k, where Id denotes

the number of messages in channel C.

A reachability graph of a network (M,N) is a directed graph in which the nodes

correspond to the reachable global states of (M,N), and the edges represent the follows

function. That is, th-re is an edge from state si to state sj if and only if sjfollows si. The

edges are labeled with the transitions which they represent. This reachability graph can be

generated by starting with the initial state, and adding the states which follow it, connecting

them to it with edges; and repeating for each new state generated.

The next two definitions are of errors that may occur in a communication

protocol, which are detectable by analysis.

A global state [m,Cm,n,cn] is a deadlock state if both m and n are receiving nodes,

and Cm=C =E, where E denotes the empty string.

A global state [m,cm,n,cnl is an unspecified reception state if one of the following

two conditions is true:

6

(1) m is a receiving state, the message at the head of channel c. is g, and none of

m's outgoing transitions is labeled '+g.'

(2) n is a receiving state, the message at the head of channel cm is g, and none of

n's outgoing transitions is labeled '+g.'

These error conditions can be identified by generating the reachability graph for

a network, and inspecting all states as they are generated.

In the next section, an example protocol is specified and analyzed using the

CFSM model.

2. An Example of Protocol Specification and Analysis Using CFSM

CFSM specification of an imaginary ring-like network consisting of three

communicating machines is shown in Figure 2.

Machine I Machine 2

-D3,2 +D3.1
.............. 3 , 3

Machine 3

+D2,2
-D2, I

-D 4 , I --
2 3'Z

Figure 2: CFSM specification for the example protocol

It is assumed that the protocol is used at the data link layer, making use of the

services provided by the physical layer.

7

Edges are labeled such that the characters following the '-/+' shows the messages

and the numbers represent the destination machine. Each machine sends one message to the

next machine and receives a message from the previous machine in clockwise direction

forming a ring. Ignore the dashed edges and nodes for the time being. The initial state of

each machine is 1; thus the initial global state is [1,EE,1,E,E,1,E,E].

The reachability analysis can be done by a simple procedure. Starting with the

initial global state only one transition is possible, the '-DO' of the machine I from state 1.

This leads to global state [2,DO,E,1,E,E,I,E,E]. We can continue the analysis in the same

manner detecting the possible transitions from this new global state. The complete

reachability analysis is given in Figure 3 consisting of a total of six states.

- [1,E,E,1,E,E, 1,E,E]
• -DO,2

[2,DO,E, 1,E,E,1,E,EJ
I +DO,I

[2,E,E,2,E,E, I,E,E]

I -DI,3

[2,E,E,l,E,DI,1,E,E]

4 +DI,2

[2,E,E,1,E,E,2,E,E]

4 -D2,1

12,E,E, 1,E,E, 1,,D2,E]

I +D2,3

Figure 3: Reachability analysis of the example protocol

In this sample protocol, there are no deadlocks or unspecified receptions. If the

dashed edges and states in Figure 2 are added to the specification, the reachability analysis

8

shown in Figure 4 would be achieved. In this analysis there is one deadlock condition and

one unspecified reception. In global state [3,EE,3,E,E,1,E,E], all the channels are empty

and all the nodes are receiving nodes satisfying the deadlock condition. In global state

[2,E,E,I,E,E,3,D4,E], machine 1 and machine 2 are in receiving states but none of the

outgoing transitions are labeled '+D4', satisfying an unspecified reception condition.

[1,E,E,l,E,E,1,E,E] -D3,2 [3,D3,E,l,E,E,1,E,E]

1 -D0,2 1 +D3,1

[2,DO,E,I ,E,E,1,E,E] [3,EE,3,E,E,IEE]

I +D0,1 Deadlock

12,E,E,2,E,E,1,E,E]

1 -D1,3

[2,E,E, I ,E,D 1,1,E,E]

4 +D1,2

[2,E,E, I,E,E,2,E,E] - [2,E,E,I,E,E,3,D4,E]
, -D4,1 Unspecified

-D2,1 Reception

[2,E,E, 1,E,E,1,D2,E]

+D2,3

Figure 4: Reachability analysis including errors

3. Summary

The CFSM model is simple and easy to understand. However, as the protocols

become more complex, this model becomes difficult to use due to a combinatorial

explosion of states. The analysis might not terminate if the queue length is unbounded. The

number of states in the reachability graph will be unmanageably large for such complex

9

protocols even if the queue length is bounded. A computer analysis might eventually

terminate, but still the CPU time would be days even months, obviously impractical.

Another disadvantage is that as the protocols become more complex, the

specification of the protocol can be so large, consisting of many states and transitions, that

it makes it very hard to understand if it is the intended specification. Several examples are

given in Chapter V that show the largeness of analysis for some protocols.

B. SYSTEMS OF COMMUNICATING MACHINES

In this section the SCM model is described. First the model definition is given, then

the algorithm for generating the system state analysis is described. Finally the model is used

for specification and analysis of an example protocol to illustrate the important aspects of

the model.

1. Model Definition

A system of communicating machines is an ordered pair C = (M,V), where

M=(m1,m 2,...,mn)

is a finite set of machines, and

V=(vl,v 2,...,vk)

is a finite set of shared variables, with two designated subsets Ri and Wi specified

for each machine mi. The subset Ri of V is called the set of read access variables for

machine mi, and the subset Wi the set of write access variables for mi.

Each machine mi E M is defined by a tuple (Si,sLi,Ni,i), where

(1) Si is a finite set of states;

(2) s r Si is a designated state called the initial state of mi;

(3) Li is a finite set of local variables;

10

(4) Ni is a finite set of names, each of which is associated with a unique pair (p,a),

where p is a predicate on the variables Li u Ri, and a is an action on the variables of Li u

Ri u Wi. Specifically, an action is a partial function

a: Li X Ri --* Li X Wi

from the values of the local variables and read access variables to the values of

the local variables and write access variables.

(5) ;i: Si X Ni -, Si is a transition function, which is a partial function from the

states and names of mi to the states of mi.

Machines model the entities, which in a protocol system are processes and

channels. The shared variables are the means of communication between the machines.

Intuitively, Ri and Wi are the subsets of V to which mi has read and write access,

respectively. A machine is allowed to make a transition from one state to another when the

predicate associated with the name for that transition is true. Upon taking the transition, the

action associated with that name is executed. The action changes the values of local and/or

shared variables, thus allowing other predicates to become true.

The sets of local and shared variables specify a name and range for each. In most

cases, the range will be a finite or countable set of values. For proper operation, the initial

values of some or all of the variables should be specified.

A system state tuple is a tuple of all machine states. That is, if (M,V) is a system

of n communicating machines, and si, for 1•< i < n, is the state of machine mi, then the n-

tuple (s,s2, ..,s,) is the system state tuple of (M,V). A system state is a system state tuple,

plus the outgoing transitions which are enabled. Thus two system states are equal if every

machine is in the same state, and the same outgoing transitions are enabled.

The global state of a system consists of the system state tuple, plus the values of

all variables, both local and shared. It may be written as a larger tuple, containing the

11

system state tuple with the values of the variables. The initial global state is the initial

system state tuple, with the additional requirement that all variables have their initial

values. The initial system state is the system state such that every machine is in its initial

state, and the outgoing transitions are the ;ame as in the initial global state.

A global state corresponds to a system state if every machine is in the same state,

and the same outgoing transitions are enabled. Clearly, more than one global state may

correspond to the same system state.

Let T (spn) = s2 be a transition which is defined on machine mi. Transition T is

enabled if the enabling predicate p, associated with name n, is true. Transition 't may be

enabled whenever mi is in state si and the predicate p is true (enabled). The execution of 'r

is an atomic action, in which both the state change and the action a associated with n occur

simultaneously.

It is assumed that if a transition is enabled indefinitely, then it will eventually

occur. This is an assumption of fairness, and is needed for the proofs of certain properties.

2. Algorithm: System State Analysis

The process of generating the set of all system states reachable from the initial

state is called system state analysis. This analysis constructs a graph, whose nodes are the

reachable system states, and whose arcs indicate the transitions leading from each system

state to another. This graph may be generated by a mechanical procedure which consists of

the following three steps [Ref. 11:

1. Set each machine to its initial state, and all variables to their initial values. The
initial set of reachable system states consists of only the initial system state; the
initial graph is a single node representing this state.

2. From the current system state vector and variable values, determine which
transitions are enabled. For each of these transitions, determine the system state
which results from its execution. If this state (with the same enabled transitions)

12

has already been generated, then draw an arc from the current state to it, labelling
the arc with the transition name. Otherwise, add the new system state to the graph,
draw an arc from the current state to it, and label the arc with the name of the

transition.

3. For each new state generated in step 2, repeat step 2. Continue until step 2 has
been repeated for each system state thus generated, and no more new states are
generated.

3. An Example of Protocol Specification and Analysis Using SCM

The specification of an imaginary ring-like network consisting of three machines

similar to the CFSM example in the previous section is given in Figure 5. The specification

consists of the finite state machines, the local and shared variables, and the predicate action
table, shown in Table 1. The local variables are: inbuff), in_buff2, in_buff3, out buff),

outbuf2, and outbuff3 and shown under the corresponding FSMs with their initial

values. The shared variables are: CHAN], CHAN2, and CHAN3 and shown between the

two machines. The initial state of each machine is 0, with the shared variables and local

variables are empty except the local variable out buffl, which has data in it. E in the

predicate-action table shows the empty string. A character D will be used to represent the

data in the out buffl local variable. Other notations in the predicate-action table are

intuitive.

Each machine sends one message to the next machine and receives a message

from the previous machine in clockwise direction forming a ring. The global reachability

analysis, shown in Figure 6, has 12 states. The system state analysis, shown in Figure 7, has

only 6 states. The subscripts in Figure 7 are used so that distinct system states having the

same tuple (but not the outgoing transitions) may easily distinguished.

13

M1 M2

0 ~ CHANI

Inhsif:l I bhuffZ
ad haffi: D adh It

CHAN3 M3CHAN2

oadbuffS: E

Figure 5: FSMs and variables for the example protocol

TABLE 1: PREDICATE-ACTION TABLE FOR THE EXAMPLE PROTOCOL

Transition Enabling Predicate Action

snd-datal outANI= *EA CHANI 4- out~buff)
out~uffl* EouLbuffi +-- E

rcv.-ata3in_buffl +- CHAN3
rcvclaa3CHAN3 *E out~buff) 4- in buff)

CHAN3 +- E

sddt2CHAN2 E A CHAN2 +- out_bufl2
Sfd~at2ouLbuff2 *E out~buft2+- E

rcvý ata CHAI *Ein_buft2 +- CHAN I
rcv~ata)CHAN *Eout-buff2 + in-buft2

CHANI +- E

snd-data3 CHAN3= E A outbuf3 +- Eu~uf
oubf3*E out buff3 +-E

in_.buff3 +- CHAN2
rcv-daWa CHAN2 * E out~bufI3 +- in_buff3

____ ___ __ ___ ___ ___ ___ ___CHAN2 + E

14

[m I ,in buf ,out-buffl ,mj2.in.fr2.outbuff2,m3.in.buff3,ouLtbuff3,CHANI ,CHAN2,CHAN3]

[O.ED,0,E,E,OE.EEE,E]

I snd dataI
[1,E,E,0,E,E,0,E,ED,E,EJ

I rcvy_datal
[I,E,E,I ,D,D.O,EE.E,EEs

4 snd daia2
[iE,E,0,DE.0,E,E.E,DEI

I 1,EE,0,D,E, ,DD,E,EEI

sndjdata3
[I ,E,E.0,DE.O,DE,E.EDJ

jrcvJlaWa

[ODD.0.D,E,0,DE,E.EE].-
I snd daita

[I,D,E,0,D,E,O,D,E,DE.EI

i rcv data2

[1 ,D,E,O,D,E. D ,D,D,E,EE,E
I snvdat3

[I ,DE.ODEODEE,EDJ

Figure 6: Global reachability analysis for the example protocol

Thus, for this protocol we have 6 system states, and 12 global states. For more

complex protocols, the difference between these numbers can be much more. For example,

a sliding window protocol with a window size of 8 the system state analysis was shown to

generate 165 states, while the full global analysis generated 11880 states [Ref. 1].

15

[0,0,0•.

rcdaiaml

[l, 1,04o

11.0,010I rddatsl

1 0

[1.,0110
mnd.da,-3

[1,0,012

Figure 7: System state analysis for the example protocol

4. Summary

The SCM model has desirable properties which overcome some of the

disadvantages of the CFSM model. One of the advantages of the SCM model is that it

greatly reduces the number of state explosion through the use of system state analysis. In

some cases, however, the system state analysis is not sufficient for protocol analysis, and

some other method - such as global analysis - must be done. A problem with the system

state analysis is the loops in the state machines which may cause an insufficient analysis.

This problem is illustrated with an example in Chapter V.

Another advantage of SCM model is that it allows communication between

machines in nonsequential manner, unlike a FIFO queue representation in the CFSM

model. The SCM model specification is also easier to understand than the CFSM model for

more complex protocols.

16

III. SIMPLE MUSHROOM: A PROGRAM FOR AUTOMATING CFSM
REACHABILITY ANALYSIS

This Chapter and the next Chapter will describe a program called mushroom, which

was written in the Ada programming language. Mushroom automates the reachability

analysis of protocols specified by the CFSM and the SCM models. The Mushroom program

was first developed as two separate programs. The first program called simple mushroom,

automates the CFSM analysis. The second program automates either system state analysis

(smart mushroom), or the full global analysis (big mushroom) for a protocol specified

formally by the SCM model. The General structure of the Mushroom program is shown in

Figure 8.

CFSM scm

sip~dleai Big df Smuto

mushroom Mushroom Mushroom

Global Global systm
Reacdlb"Ity Reachability State
Analysis Anmlyds Analyls

Figure 8: General structure of Mushroom program

17

The Simple Mushroom program, is described in this chapter in four sections: program

structure, inputs to the program, generating the reachability analysis, and outputs of the

program.

A. PROGRAM STRUCTURE

The Simple Mushroom program consists of Ada subprograms (procedures and

functions), which are separate compilation units and subunits of compilation units. Related

subprograms are also gathered in the same files. The compilation units of the program are

shown in Table 2. Procedure main is the parent unit. All of the subprograms are the

subunits of procedure main. [Ref. 131

TABLE 2: SIMPLE MUSHROOM PROGRAM COMPILATION UNITS

Compilation Unit Description File name

main (procedure) This is the parent unit. Contains tmain.a
the main data structures, global
variables, and the driver.

loadmachinearray Builds the adjacency lists from tinput.a
(procedure) FSMs.

read in-file (procedure) Parses the input FSM text file. tinput.a

buildGstate.graph Generates the reachability graph. treachability.a
(procedure) _

IsEqual (function) Compares two global states for treachability.a
equality.

hash (function) Generates an index number treachability.a
according to the hashing function.

clear_pointers (procedure) Deallocates the dynamic memory treachability.a
space for another analysis.

find_tuple (function) Searches the reachability graph tsearch.a
for the equivalent tuples using
external (open) hashing.

18

Compilation Unit Description File Name

clearhasharray Clears the hash array and tsearch.a
(procedure) deallocates the memory.

Print Queue (procedure) Prints the FIFO queues. toutput.a

output_Gstatetransition Outputs the transition name. toutput.a
(procedure)

outputGatatenode Outputs the machine ,tates, toutput.a
(procedure) unspecified receptions, and

the states with deadlocks.

output-machine-arrays Outputs the FSM description in toutput.a
(procedure) a tabular format.

output-unexecutedtransi- Outputs the unexecuted transitions. toutput.a
tions (procedure)

createoutputufile Creates an output file for storing toutput.a
(procedure) the analysis results.

output-analysis (procedure Driver for the output subprograms. toutput.a

system-call (procedure) Interface procedure for Unix tsystem.a
system calls via C.

message-queues Implements the queue operations tqueues.a
(package) for the FIFO communication

channels.

pointer-queues Implements the queue operations queues_2.a
(generic package) for the pointer queue that stores the

globals tuples temporarily.

19

The method of splitting the program into separate compilation units has permitted a

hierarchical program development.

B. INPUT

The CFSM specification of a protocol consists of only FSMs of the communicating

machines. In the program, FSMs are represented with a text file. The user enters the

directed graphs as a text file using some reserved words, numbers, and characters

representing the machines, states and the transitions. The list of reserved words and the

syntax for the FSM text description are shown in Figure 9 in Backus-Naur Form (BNF).

reservedword start
I numberofmachines
I machine
I state
Itrans
I initial-state

Ifinish
number of machines <machine_number>
machine I I <machinenumber>
state <statenumber>

trans { } <message> <nextstate> <nextmachine>

initial-state <statenumber> <statenumber> [<statenumber>] [<state_number>]

[<state-number>] [<statenumber>] [<statenumber>] [<statenumber>]
<machinenumber>::= 2131415161718
<statenumber> ::= 012131 150

f <letter> <letter> rr<letter>
<message>::= <digit> III <digit> .f LL<digit> }1
<nextstate> ::= <statenumber>
<nextmachine> ::= II <machine_number>
<letter>::= albi...IzIAIBI...IZ
<digit>::= 0111213141516171819

Figure 9: Syntax for the text description of FSM

20

As can be seen from Figure 9, the maximum number of machines allowed is eight, and

the number of states for each machine can be from 0 to 50. Transition names must be at

most three characters long and may be any combination of letters or digits. These

constraints can be relaxed with slight modifications to the program, if necessary.

The input file for the example protocol in Chapter II for the CFSM model is shown in

Figure 10. For example, "trans -D3 3 2" represents a transition from state I to state 3 (first

number) in machine I sending ("-" sign) the message "D3" to machine 2. "Initialstate I I

I" means that the initial states of machine 1, machine 2, and machine 3 are state 1.

start
number_of machines 3
machine I
state I
trans -D3 3 2
trans -DO 2 2
state 2
trans +D2 1 3
machine 2
state I
trans +D3 3 1
trans +DO 2 1
state 2
trans -DI 13
machine 3
state I
trans +D2 2 2
state 2
trans -D4 3 1
trans -D2 I 1
initial_state I I 1
finish

Figure 10: Text file description of the FSM

First, this file is parsed by readinfile procedure and tokens are generated. Then,

Loadmachine-array procedure constructs an adjacency list which represents the FSMs.

21

The data structure for the adjacency list is shown below:

type cfsm_transition-type is (s,r,u);
type visiLtype is (yesno);
type state-Jype is range 0..50;
type next_machinejrype is range 1..8;
type machine_array-recordjtype;
type Slink-tupe is access machine_arrayrecordjtype;
type machinearray-record.type is

record
transition : cfsmtransitiontype := u;
message : messageý..queue.message.queue..type;
nexLMstate : statejtype := 0;
other_machine : nexLmachine-type:= 1;
visited : visittype:= no;
Slink : Slink-type := null;

end record;
type machinearray_type is array(state-type range 0..50) of Slink-type;
type system-array type is array(next_machine type range 1..8) of machine-arraytype;

The adjacency list for the example protocol is depicted in Figure 12. This adjacency

list is used for constructing the global reachability graph. The adjacency list contains all the

necessary information for generating the global reachability graph.

The user also provides the name of the text input file and a file name for storing the

analysis results. Input file name must end with ".fsm" extension to prevent confusion. The

output file name must be no more than 20 characters long.

C. REACHABILITY ANALYSIS

After reading the input file the program starts generating the global reachability graph.

The program uses the adjacency list and the initial state to construct the global reachability

graph. Starting with the initial state, the new states are added and linked to the graph

dynamically. The algorithm to construct the global reachability graph is given in Figure 13.

During the graph construction, the program also detects the global states with

deadlocks and unspecified receptions. The program also finds the maximum message

queue size and channel overflows. Analysis results are stored in the output file in parallel

22

transition transition a
mnessa •V

1 .u"• •-sition visition

Machine 1 2 - - ..

rS linka

transition

nextu~ Msa.. Ieset 2

transition r
Machine 1 2 n-- 2 m

oummam 3 t•mahn

3

transition r rnito
Messafe [Ui]
next-Mstate 3 t s]t

1 - op -* h lliaitrne ohea2Jn

transition s ta~to
Machine 32 0 * next state Il

othrnk che

3 ie

Figue 1: Ajacecy istfor he xamle ingprtolinCatrI

23nito

with the graph construction. This prevents the traversal of the entire graph one more time

at the end of the program and decreases the run time.

loop (main loop)
for index] in I .. total_numberof machines loop

place_holder(indexl) machine array(indexl) (M_siate(indexl))
while (placeholder(index) /= null) loop

loop
if (placeholder(index)).transition = s) then

Enqueue the message into the corresponding message queue
search the graph for this new global state tuple
if not found then create a new node and link to the graph
Enqueue this new node to the pointer queue

else link the transition to found global state tuple
else

if(place holder(index)).transition) = r and at least one of the message queues for
this machine is not empty then
find this message queue and Dequeue
search the graph for this new global state tuple
ifnotfound then create a new node and link to the graph

Enqueue this new node to the pointerqueue

else link the transition to found global state tuple
end if,
placeholder(indexi) := place holder(indexl).Slink
exit

end loop
end loop

end loop
if pointerqueue empty then

exit
else

Dequeue pointerqueue and update M state for this new node
end if

end loop (main loop)

Figure 13: Algorithm for generating global reachability graph for CFSM

One of the most time consuming procedures is the search algorithm for detecting if a

node was previously created. The previous version of the program [Ref. 8] used a depth

first search / breadth first search in a recursive manner. In this program, the search is made

24

more efficient using a hashing algorithm. The hash function is obtained from the machine

states of the global tuple which has provided an efficient mapping. Therefore, the

complexity of the search algorithm is 0(1) when the hash function generates a distinct

index (no collision) and 0(n) when the same index is generated, where n is the number of

hash collisions for that state. In many sample runs of the program, the complexity was 0(1)

for about 30% of the global states, and 3 nodes had to be traversed on the average for 70%

of the global states. The reachability analysis is limited by the storage capacity of the

computer. The run time is also another factor that must be considered. The largest analysis

carried out by the program thus far has generated about 160,000 states in 12 hours for a six

machine protocol specification. Some alternative methods for improving the efficiency of

the program and analysis size using other search techniques are discussed in Chapter VI.

The structure of a global node is shown in Figure 14. The maximum number of

outgoing transitions is limited to 7, which can be increased if needed. Also, a maximum

channel capacity of 6 messages is introduced to ensure that the analysis eventually stops.

D. OUTPUT

The program stores the analysis results in a file named by the user during the

reachability graph construction. This file contains the specification in a tabular format,

reachability graph and the results of the analysis consisting of the number of states

generated, number of states analyzed, number of deadlocks, number of unspecified

receptions, maximum message queue size and number of channel overflows. Global states

with deadlocks and unspecified receptions are also marked in the reachability graph. The

output file also lists the unexecuted transitions. A menu is displayed at the end of the

analysis. From this menu the user has the option of displaying or printing the results or

continuing the program for another analysis.

25

If the analysis generates more than 2000 states, the program gives an interim summary

of the analysis and asks the user if they would like to continue. If the user wishes to

continue, analysis proceeds in steps of 1000 states until the analysis ends or the user

terminates the analysis (as long as memory is available). For analyzing large protocols, the

number of states between these "stops" can be made larger (for example, increments of

5000 or 10000). The program output for the example protocol in Chapter II is given in

Figure 15.

System state number

Machine-state

queue.num 1,1
queue-num 1,2

GTUPLE

_queue num 8,8
Gtransitlon
Gmsse

1 Next machine

new nodeGfink

2

LINK

7

Figure 14: Global state structure with outgoing transitions

26

t&IC=IaTrn ANALYSIS of : rnag. fa
BPZCIFrCILTION

I Macki 1 Stat. Tr•s~itioan I

I Fr I To I othe machine I Trmnsition I

1 1 2 1 2 I a do
1 1 3 1 2 I d3 I

I 2 I 1 I 3 I r42 I

I Machine 2 Stat. Tzranitions I

I Fre I To I other machine I Tranuitioa I

1 1 2 1 1 I dO I
1 1 3 I 1 I rd3 I

I 2 I1 3 I a dl I

I Machine 3 State Tzansitions I

I Nn I To I other machin. I Tranuition I

1 1 2 1 2 I rd1 I
2 1 1 11 1 I 42

12 1 3 1 1 I a44 I

SC 1,3,3, .1,3,3, 1,3,3l
-dO 2 C 2,2,1,1,3,3,1,3,1 2
-43 2 [3,d3,3,l,3,3,1,3,33 3

2 1 2,dO 3, 1,3,3,1,3,1
+40 1 4 2,3,3,2,3,1,1,3,1 4

3 C 3,4,3,1,3,3,1,1,31
+d3 1 2 3,1,1,3,1,1,1,1,1] 5

4 [2,2,3,2,9,2,1,3,21
-41 3 C 2,1,,1,3.,1,1d,3L,,I) 6

S (3,3l,S, 3,3I,3I,1,3l,31 **********DgWtZOcK ooclditomt******O*******
6 [2,3,3,1,3,d.,1,3,33

+dl 2 E 2,,3,1,3,3, 2,3,23 7
7 (2,3,3,1,3,3,2,3,31

-42 1 C 2,3,3,1,3,3,1,d2,3} S
-44 1 C 2,3,3,1,3,3,3,d4,31 9

S C 2,3,3,1,3,3,1,42,3]

+d2 3 1,3,3,1,3,,,1,3,} 1•[2,3l, , 1, 3, , 3, d4,31]*"******Ualp~cifi.d PaoqptiLoae**'**'*~*

3UB31MR Or R3ACM.3ILZY AMWMISZ (ANSALYSIS COWWL3TD)

Total amber of states generated 9
number of states analyzed :
number of deadlock. 1
Number of uanspecifed receptions 1
Mazximu mmsage queue ale : 1
Channel overwflow :303

Figure 15: Program output for the example ring protocol

27

IV. SMART AND BIG MUSHROOM: A PROGRAM FOR AUTOMATING SCM
REACHABILITY ANALYSIS

In this Chapter, programs that automate either system state analysis (smart

mushroom), or the full global analysis (big mushroom) for a protocol specified by SCM

are described. The program is described in four sections: general program structure, inputs

to the program, generating the reachability graph, and outputs of the program.

A. PROGRAM STRUCTURE

Program structure of Smart Mushroom and Big Mushroom are similar to the structure

of Simple Mushroom. The SCM model specification is more complicated than the CFSM

specification, but this complexity in the specification brings some advantages to the

analysis as mentioned in Chapter II. A protocol specified by the SCM model consists of

FSMs, variable definitions, and predicate-action table, rather than just the FSMs as in

CFSM model.

FSMs are entered into the program in the same manner as in Simple Mushroom

program using a text file. The variable definitions and predicate-action table must also be

entered into the program. The user enters these parts by completing Ada packagesI and

subprograms using the templates provided.

The compilation units for the program are shown in Table 3. The user has access to the

last four packages/subprograms. Once the user completes these subprograms using the

templates and compiles them with the other compilation units, the analysis of the specified

1. Ada packages are one of the four forms of program unit, of which programs can be composed.
The other forms are subprograms, task units, and generic units. Packages allow the specification of
groups of logically related entities. In their simplest form packages specify pools of common object
and type declarations. [Ref. 13]

28

protocol can be performed. Construction of the specification in the form of Ada packages

and subprograms is explained in the next section.

TABLE 3: SMART AND BIG MUSHROOM PROGRAM COMPILATION UNITS

Compilation Unit Description File name

Main (procedure) This is the parent unit. Contains the smain.a
main data structures, global vari-
ables, and the driver.

load machinearray Builds the adjacency lists from sinput.a
(procedure) FSMs.

read_infile (procedure) Parses the input FSM text file. sinput.a

build_Gstate.graph Generates the global reachability sg.reachability.a
(procedure) graph.

buildsystemr.state.graph Generates the system reachability sgjreachability.a
(procedure) graph.

hash (function) Generates an index number sg.reachability.a
according to the hashing function.

clear._pointers (procedure) Deallocates the dynamic memory sg-reachability.a
space for another analysis.

searchjfor_Gtuple Searches the reachability graph sg_.search.a
(function) for the equivalent global tuples

using hashing.

clearhasharray Clears the hash array and deallocate, sg..search.a
(procedure) the memory for global reachability

analysis.

searchforStuple Searchs the reachability graph sg__search.a
(function) for the equivalent system tuples

using hashing.

clear_hshash_array clears the hash array and deallocates sg_.search.a
(procedure) the memory for system state

analysis.

output-Gstatenode Outputs the machine states, and sg.output.a
(procedure) states with deadlock for global

reachability analysis.

29

Compilation Unit Description File Name

output-sys node Outputs machine states, and sg-output.a
-t S- states with deadlock for system

(procedure) state analysis.

outputGstatetransition Outputs the transition name for sg-output.a
(procedure) global reachability analysis.

output-sys-transition Outputs the transition name for sg-output.a
(procedure) system state analysis.

outputunexecutedtransi- Outputs the unexecuted transitions. sg.output.a
tions (procedure)

outputmachine-arrays Outputs the FSM description in sg._output.a
(procedure) a tabular format.

output-analysis Driver for the output subprograms. sg-output.a
(procedure)

system-call (procedure) Interface program for Unix ssystem.a
system calls via C.

queues (generic package) Implements the queue operations squeues.a
for the pointer queue that stores
the nodes temporarily.

stacks (generic package) Implements the stack operations sstacks.a
for storing enabled transitions.

definitions (package) Includes user defined local and named by the
shared variables, user

Analyze-Predicates Determines the enabled transitions named by the
(procedure) there is one from the predicates. user
for each machine

Action (procedure) Executes the actions for the named by the
enabled transitions, user

output-gtuple (procedure) Outputs the global state tuples in named by the
a format defined by the user. user

30

B. INPUT

The inputs to the program consists of three parts, as mentioned earlier. FSMs are

entered using a text file representation as in Simple Mushroom program. Variables and

predicate-action table are entered as Ada packages/subprograms. The user needs to

complete these packages and subprograms by filling in templates provided.

The Ada package template for the variable declarations is called "definitions." The

predicate-action table is entered using an Ada subprogram template which consists of one

procedure named "Action" and two to eight procedures called

"AnalyzePredicatesMachine*" according to the number of machines in the protocol.

The "*" at the end of the procedure name is replaced by the corresponding machine number

for each machine in the protocol.

After completing the templates described above, the user must compile these units

with the other compilation units listed in Table 3. The program units can be compiled by

entering a "make" command. The "make" command executes a list of shell commands in

the "Makefile" file which contains the commands for compiling the program units

according to their dependencies. After issuing the "make" command, the executable file is

stored in a file named "scm." The "Makefile" is provided to the user with the mushroom

program.

Each of these program units will be explained in the following subsections. The

example ring protocol described in Chapter II is also used to illustrate how to complete the

templates.

1. Finite State Machines

There are a few differences in the FSM description of Smart and Big Mushroom

programs from Simple Mushroom program. The same reserved words are used to write the

31

FSM text file. These are listed in Figure 9. The syntax changes that must be made to this

form are shown in Figure 16.

In the SCM model, explicit machine numbers to show which machine the

message sent to or received from are not needed for the transition names. Since shared

variables are used for communication between machines, this information is included in the

predicate-action table. The FSM text file for the example ring protocol is shown in Figure

17.

trans <transition name> <next_state>
<transition name>::- <identifier>
<identifier>::= ([underline] I letteror_digit)
<letteror._digit> ::= <letter > I <digit>

Figure 16: Syntax changes for FSM description of SCM model

start
number_of machines 3
machine 1
state 0
trans snddatal I
state I
trans rcvdata3 0
machine 2
state 0
trans rcv datal I
state 1
trans sndjdata2 0
machine 3
state 0
trans rcv_data2 I
state I
trans snd-data3 0
initialstate 0 0 0
finish

Figure 17: Text file description of the example ring protocol

32

The FSM text file is read by the input procedures and the adjacency list, which is

used during the construction of system and global reachability graphs is generated. The data

structure for the adjacency list is shown in Figure 18.

visittype is (yes, no);
type machinearray_ecord_type;
type Slink-type is access machinearray_record-type;
type machine array_=ecord_type is

record
transition scmtransition-type:= unused;
next_Mstate natural:= 0;
visited visittype := no;
Slink Slink_type := null;

end record;
type machine.array-type is array(integer range 0.. 50) of Slink-type;
type systemrnarrayjtype is array (1 .. num of machine) of machinearraytype;

Figure 18: Data structure for the adjacency list.

2. Variable Definitions

The user defines the protocol variables in an Ada package named definitions. This

package includes the local variables for each machine and the global variables, which are

considered shared and allow c.-mmunication between machines. A variable can be one of

the Ada defined types such as: integer, array, string, record, character, boolean, etc. These

types and their subtypes are used to define the protocol variables.

The template for the definitions package is given in Figure 19. The shaded areas

show where the variables of the protocol are inserted by the user. Additional type

declarations should be placed before the machine type declarations.

The variable declarations for the example ring protocol is also shown in Figure

20. The local variables of the protocol are: in buffl, in buff2, in bufl3, out buffM,

outbuff2, and out buff3. The shared variables are: CHANI, CHAN2 and CHAN3. The

type definition, Dummytype is placed in each of the local variable declarations of

33

machines in case the protocol has less than eight machines. When declaring the local

variables for each machine, this dummy variable can be deleted from the corresponding

machine. The initial values of the variables are also assigned with the variable declarations.

with TEXT_10;
use TEXT_10; Nmbae of macekh In the upeclmfa
package definitions is v (cm be 2 to 8)

num_of_machines: constant:=
type scmtransition type is (
type dummy-type is range 1..255;

type machineistatetype is Tramadti ames of FSMs

record
dummy : dummy-type;

end record;

type machine8_state type is
ord e-t Local variables fir macbiaes 1 to 8

dummy : dummy type;

end record;
type global variabletype is

record
Global (dred) variables

end record;
end definitions;

Figure 19: Template for definitions package

3. Predicate-Action Table

The predicate-action table is represented by a number of subprograms as separate

compilation units. These subprograms are named AnalyzePredicates and are used to

determine the enabled transitions for each machine. The procedure named Action executes

the actions to be taken for the corresponding enabled predicates. There is one

34

Analyze-Predicates procedure for each machine and one Action procedure for the protocol.

The template for the A nalyzePredicates procedure is shown in Figure 21.

with TEXT IO;
use TEXTIJO;
package definitions is

num of_machines: constant := 3;
type scmtransitionJype is (snd.datalrcv data3,snd.data2,

rcv-datal,snd-data3,rcv-data2,unused);
type buffer type is (DE);
package buTf enum io is new enumerationuio (buffertype);
use buff enum io;
type dummy-type is range L..255;

type machine1 state-type is
record

out buM : buffertype := D;
in buffl : buffer-type:= E;

end record;
type machine2 statejtype is

record
out buff2,
in uuff2 : buffer-type:= E;

end record;
type machine3 statejtype is

record
out buff3,
in buff3 :buffertype:=E;

end record;
type machine4.statejtype is

record
dummy: dummyype;

end record;

type machine8stetype is
record

dummy : dummy-type;
end record;

type global-variable-type is
record

CHANI,
CHAN2,
CHAN3 : buffertype: E;

end record;

end definitions;

Figure 20: Completed Definitions package for the example ring protocol

35

separate(main)
pWcedwt AnalyzePredicatesjmachinel(local: mnahinel_sutejype;

global: global variabletype;
s: natur;
w : in out ransitionýlsack_packagestsck) isbegin

ae s is .'Enabling condition
when 0=>

if ()tdhen
push(w,end if;

when I => Enabled transition

when others =>
null;

end case;
end Analyzelredicates_machinel;

Figure 21: Template for A nalyzePredicates procedures

The user completes the template for each state of the machines. For each machine

state there is one "when" statement. "If' statements specify the predicates for possible

transitions from the current state. The "Push" statement stores these transitions in the stack.

Since more than one transition can be enabled in some states, a stack is used to store all

possible transitions. The "s" parameter, in the formal parameter list of the procedure, passes

the machine state; and the "w" parameter passes the stack name to the procedure. The file

for the example ring protocol is given in Figure 22.

The template for the Action procedure is shown in Figure 23. The enabled

transitions are passed into this procedure through the "intransition" formal parameter and

the necessary changes are made to the local and shared variables by the Action procedure.

The "out_systemrnstate" parameter passes the changed protocol variables to the calling

procedure. The completed Action procedure is shown in Figure 24. Text in boldface shows

the user defined parts.

36

.epmme (ram)
pmusdme AnalyzePnsdimmMachimei0oad : ms din elmine t3q• GLOBAL $1etmlvambae=type;

s : nmml; w :in eut mmi, mmack•e.mdk)h
be|ira
tame w is

wbmt 0 =>
if((GLOBAL.CllAN! = E) aad (LOCAL.•tImdYl/= E)) then

Pmh(w.md dsUd):
end if;

when I =>
if (GLOBAL.CHAN3/= E) then

Push(w.s.•_ds•);
end•;

whm od•m =>
null:

end cue.
end A•lyzePn•licatmMachine 1;

pmu•m Amdy• Po•lkam lVlachine20eud : mochim2 • type; GLOBAL: Itte• variable t•e;
s: natural, w : in out uumitionsmck psd•,, mack) is

begin
case s is
• 4ws 0 =>

if (GLOBAL.CHANI/: E) d•
•d•(wrcvdatsl),

endif;
wlms 1--:•

if ((GLOI•,L.CHAN2 = E) and (JocaLovt heft2/: E)) then
i•sh(wjmd data2);

end if;

null;

end Anai•_l•dica•_Mschine2;
.epm• (ram)
procedure Anal• Pn•dicmm M•:hine3(i•.ai : nm•3_m•_p/pe; GLOBAL: 10•lvariabk type;

s : natural; w : in out uansifionm•kpedmSe.mck) is

case sis
wb• 0-->
if (OLOBALCHAN2/-- E) th•
pBh(wrcv dm2•.

wbm I =>
if ((GLOBAL.CHAN3 = E) sad (Io•l•mlm•3/= E))
push(w.md daub):

e•d it;
where odin =>
nuU;

end case;
end Al•Jy•_F•dicates MachJln•3;
sepmae (main)
lSVocedu• AnalyzPn•dicatesMachine40ocal .-machine4 rote type; GLOBAL: globalvariabletype;

s : natural; w : in out mms'aionsut•..pedmse.stack) is
besm
null,

end Amdyzel•.dkamM•hi he4;

osepm• (ram)
p•z:edme An-lyzeP•di•tesMschine80oad : mschine8_$•tetype;. GLOBAL: 81cbdvsrisbletype.

s : natural; w : in out tnmsitio• suck...pecks|e.suck) is

null;
end ,•dyze_•.dicmesMschineS;

Figure 22: Completed AnalyzePredicates procedures for the example ring protocol

37

spenedre Acac(injsijmaa aOncu.j
proedreAcio (nmjyaaenistze: in cmut Gstaae~ncotdjype) a

tr n -tianiin : no a-rnii-Y

wbegn cbn

put(-Euor in the scumn poceduvej
end cam~

end Action;

Figure 23: Template for Action procedure

separuat (main)
procedure Actiio(in-systemn.satwe in out Oaejorye;in-truansitn :11 cin out wanjruuibcn-ye;

ouL system state a n out Gswejý-ecoud...ype) is

case (ua..tuuantion) is
when (sadedaal) => mtusysemitae.GLOBAL-VARIA3LFS.CIIANI:=

uiRsyiamiatejmacbnelusates~it bwf

when (icydm523) =o, eat sysd-sam Ugmachlmul ihateJ.o :=f
inhsyimlnante-GLOBAL VARIABLS.CHAN3;

eutsyiam~sate.GWDAL-VARIA3LES.CHAN3 :=E,

when (swd dat2) =:, eutusystmulate.GWDBAL VARIAILES.CKAN2:=

eat syis. m-ate..mcbhu2 slaiecmt buff E

when (icy datal) =P. catuyiinate~machlme2 taleJahuffZ=
lnuysa.iv as.GWIFAL VAIIA3LESCHANI;

eisytem stame~acted ssmthuf bw :=ewt uyainiate~machineluIdeftb-d12
eutuyiainiate.GLOBALVARIA3LESCHAN1 :=E

when (smd data) =2- eutusystmiateGLOIAL-VARIABLES.CHAN3:=
Inyes_"*mat..chMeW3state~eutbd3;

out mystmit..macksdeS flateOutbif: E,

when (rev deta2) =3, ov. ystam ate~wachiae3 sateJe buffl
hsybuievnusaaa..LOIAL VARIADLES.CHAN2;

owt..uystm .utaernotbein adeveut buffS out ydmidataubib3-stakeJnhuID;
out system nate.GLOBAL VARIAILES.CHAN2 :=E;

when ashen => pu~lb*nc(wmv is an error in the Action procedure");
end case;

end Actina

Figure 24: Completed Action procedure for the example protocol

38

C. REACHABILITY ANALYSIS

The process of generating the set of all states reachable from the initial state is called

reachability analysis. The program is capable of generating both the global and system

reachability analyses separately for a protocol specified formally by the SCM model.

The user selects either global reachability analysis or system state analysis from a

menu. During the graph construction, the program also detects the states with deadlock

condition. Analysis results are stored in the output file named "rgraph.dat" in parallel with

the graph construction.

Generating the global reachability analysis and system state analysis will be described

in the following subsections.

1. Global Reachability Analysis

The structure of the global node representation used for the program is shown in

Figure 25. This node structure also includes the outgoing transitions. The maximum

number of outgoing transitions is limited to 7, which can be increased if necessary. The

shared variables are stored in the global variables variable and local variables are stored

separately for each machine in the machinestate* variables.

The initial global state is constructed from both the FSM text file and the initial

values of the variables assigned in the definitions package. All the outgoing transitions are

set to null initially. Starting with the initial global state, new nodes are added and linked to

the graph. The algorithm for generating the global reachability graph is the same as the

algorithm given for the system state analysis in Chapter II except that the "system states"

must be replaced by "global states." Figure 26 shows a pseudo-code algorithm to construct

the global reachability graph.

39

systemsnote numner
-acbistae 1121314 7•81

machinel state
GTUPLE machine2 State

machbleS staate
IGtransition
I new nodle

Visited

2

LINK

7

Figure 25: Global state structure with outgoing transitions

The program uses hashing for searching the reachability graph which increases

the run time efficiency of the program. The reachability analysis is limited by the storage

capacity of the computer and by the run time as in Simple Mushroom program. For

example, the program generated 31,460 global states for a sliding window protocol of two

machines defined in [Ref. 1] for a window size of 10. The run time for this example was

about 10 minutes. The number of states and the run time increases greatly as the number of

machines in the protocol increases and the protocol specifications become larger.

40

loop (main Loop)
for index) in I .. totalnumber of machines loop

positionholder(index)) :- machinearray(indal) (M state(indexl))
Determine the enabled transitions for the machine(indedl) and push into transitionstack
While not Emptyfyransitionstack) loop

while (positionhoider(indexl) /= null) loop
Traverse the machine arrays for each enabled transition in the stack
ifa transition found in the machine arrays create a temporary node resulting from this transition

call Action procedure to make the necessary changes to the variables of this node
Search the graph for this node
Vfa node not found then

insert and link the node to the graph
Enqueue the node into the Gpointer queue

else
link the node to the graph

end if
else
positionholder(indexl) posiion holder(indexl)• link

end ýf
end loop
if not Empty(transitionstack) and a transition not found in the machine arrays

pop the stack
end if,

end loop
end loop
if Gpointer..queue Empty then

exit
else
Dequeue Gpointerqueue
Update Mstate for this new node

end if
end loop (main loop)

Figure 26: Algorithm for generating global reachability graph for Big Mushroom

2. System State Analysis

The steps in constructing the system state graph are detailed in Chapter II. The

structure of a system state is shown in Figure 27. Since the variables are not part of the

system state, system state nodes are much smaller than the global state nodes. However, in

order to determine the enabled transitions, variables are still needed for each node in the

graph. The program stores the variables in secondary storage, instead of keeping them as a

41

part of the node, which decreases the amount of primary memory used and allows the

analysis of larger and more complex protocols.

The pseudo-code algorithm for constructing the system reachability graph is

shown in Figure 28.

system state number
123;4567;8

STUPLE machine-state

subscript
Stransition

VSyslink

2

LINK

7

Figure 27: System state structure for Smart Mushroom program

D. OUTPUT

"The program stores the results of the analysis in a file named "rgraph.dat." This file

contains FSMs in a tabular format, system/global reachability graph, and the results of the

analysis consisting of number of states generated, number of states analyzed, and number

of deadlocks. Unexecuted transitions are also listed at the end of the analysis.

Since each protocol specification has different variables, the user also has the

flexibility to output the desired variables. This is done in a similar manner to the predicate-

action table and variable definitions representation explained earlier using an Ada

procedure template. The template for the Otapu_Gtuple procedure is shown in Figure 29.

42

The user completes the template with Ada "put" statements for outputting the global states.

Since the system state tuples do not include the variables, there is no need to define an

output format for system reachability graph.

loop (main loop)
for index] in L.. nun of trans loop

if parentSstate.link(index).Stransition /= unused then
for index2 in I .. total num of machines loop

posiotionholder machinearray(index2) (M state(index2))
while position holder /= null loop

if position holdertransition = parentSstate.link(indexl).Stransition then
create a temporary system state and store the corresponding variables
determine the enabled outgoing transitions
search the system state graph for this node
if node not found then

insert the node and link to the graph
Enqueue the node into syspointer queue

else
link the node to the graph

end if
exit

else
position holder := position holder.Slink

end if
end loop
if an enabled transition found in the machine arrays then
exit

end if
end loop

else
exit

end if
end loop
if sysypointerqueue empty then

exit
else

Dequeue the sysj ointerqueue
update M._state

end if
end loop (main loop)

Figure 28: Algorithm for generating system state graph for Smart Mushroom program

The completed template for the outputGuple procedure is also given in Figure 30.

As in Simple Mushroom program, if the analysis generates more than 2000 states, the

program gives an interim summary and continues in steps as described in Chapter Iii. At

the end of the program, the user can display/print the results or continue with another

43

system/global state analysis selecting the desired options from the menu. The output of the

program for the example ring protocol is given in Figures 31 and 32.

separate (main)
procedure output_Gtuple (tuple : in out Gstaterecord_type) is
begin

if print-header then
new-line(2); f f var

print_header := false;
else

put("[" & integer'image (tuple.machine-state (1)));
putc(, ").

machine I local variables

put("[" & integer'image (tuplc.machine state (2)));
put("C,");

put('r" & integer'image (tuple.machine state (8)));
putc(, ");

global variables

end if;
end outpuLGtuple;

Figure 29: Template for output.Gtuple procedure

44

separate (main)
procedure outpuLGtuple(tuple: in out Ostate-recordtyrpe) is
begin

if print~beader thm
newjline(2);,
set...col(5);
put-line(" n1(In buffl~outbuffl), m2(in-buf2utbuff2)n3(in~buf3omtbuff3),

(CHAN1,CHfAN2,CHAN3)");
pnt-header: false;

else
putl([" & integeeimage(tuple.machine..state(1)))

buff enum io.put(tuple-machinel-state.in-buMf);
putC',9 ");
buff enum-o.put(tuple-machinel-sate.out-buM);
put(" ," & integoeiage(tuple.machine....sate(2)))

buff enumnio~put(tuple.machinc2..state.if..bUfW2);

put(", " uttp.I)cb;...tteO~bW)

buff inumgeimage(tuple.machine...stateou3)));2
put(" ')
butfi engeeimug(tuple.miachine3.state(3)) uf3)
putce')
buff enumino.put(tuple~machiue3..state.ut-buff3);
put(,, ");
buff enum io.put(tuple.GLOALYne-saRIADLES.CHAN1)

buff enum ao.put(tuple.GLODALYVARIADLES.CHAN2);

buff ennui io.put(tuple.GLOBAL-VARIABLES.CHAN3);

put(" r');
end if;,

end outpuLGtuple;

Figure 30: Completed owtpw Giuple procedure for the example protocol

45

M3HUXALZTT lImLTSIS of :ring.am
UI3CUFZC&TZOU1

I machie I. State Transitions I

I From I To I Transition I

I 0 I 1 I anddatal I
I 1 I 0 I ravydata3 I

I 0 I 1 I rcv datel I
I 1 I 0 I snd data2 I

I Machine 3 State Transitions |

I From I To I Transition I

I 0 I 1 I rcvdata2 I
I 1 I 0 I and -dta3 I

GLO~ALU 33cI3CAZLZ.TY GMR3P

m l(inbumfl bum~a~)jn2(im ~buff2),o..mfZ•3(imhlmflb~3),~lfi(cHA N1,(cHAN2,cHAN3)

0 (0,•, D 0 ,3,3• 0 • • • • ,]nd data1 1
1 (1,3• 3,0 ,33, 0,• , D • ,3•]rcoydata1 2
2 M 1ac ,3, 1h,,D 03 State ,Tra]tdodat2 3

3 (1,3,3 0,0D3, 0,• • • D •]rcwvdata 4
4 From ,30 D,• 1 DT I • •]snddata3 5

5 (1,1,•,0,0,3 0,D • • , D]rcv data3 £•
6 (0,0,D 0,0D3, 0,D,3,3,1,3•]a ad date1 7
7 (1,0,3,0,0,3 0,D,3,D ,3.3•]rcwydatal 8
a [1 D • 1,0,0D 0,D,3,33,3 •] ad data2 9

0 1,D, 0,• 0 D,• • ,D]rcvdita2 10
10 1,D,3,0,D,• 1, 0 , , 3,] and data3 11
11 1 ,3, 0 D a 0 D a D, 3 D]vdata3 S

S2fltY 01 9IITh ZNL Y IDS (0ZL TSZS CXadL3T3D)

3uer of states generated :12
4u1er of states analy0ed :12
5m1ber of deadlocks : 0

UN2cT3D TI•ZT!0U3

Figure 31: Program output for global Deachability analysis

46

3LI&CEXZLXY• INALTIZI of :zing.sam

ii~rzcrzcJizoul

|Macbin. 1 State Tranai.tiona |

I Vraom I To I Transiti~on I

I 0 I 1 I sad~datal I

I 1 I 0 I roydateS I

I ~acbins 2 State Tranaitiona I

I Vroa I To I Tra,,,itio,, I

I 0 I 1 I r€adatal I

I 1 I 0 I and data2 I

I Machine 3 State Transitions I

I roam I To I Transition I

0 I 1 I ranydata2 I
I 1 I 0 I anddataw I

SYSTUEI RZACEIIZLZTY 03113
0[0O,0O, 0O sad~datal 1
1 (1,0O, O0 r 0 ow•datal 2
2(t1, 1, 01]0 and~d-ta2 3
3 [1,0, 01]1 rov data2 4
4([1,O, 11]0 snd data3 5
5([1,0O, 0J]2 =rawdataS 0

SUIUXay 01 3AlrdVMZLZTY iNIL•YSIS (INULYSZS COUWLUTZ'D)

3umber of states generated :6
Number of states ana1sed : 6
IUmber of deadlock. : 0

UU/Z2CUTED TRINSITIONS
s*sseuOuus*a*,

Figure 32: Program output for system state analysis 2

2. The numbe" next to "]" sign shows the subscripts that is explained in Chpe II.

47

V. EXAMPLES FOR USING THE MUSHROOM PROGRAM

In this Chapter, the programs Simple Mushroom, Big Mushroom, and Smart

Mushroom are demonstrated with several examples.

The Simple Mushroom program will be used to analyze a simple example four

machine protocol which illustrates some important aspects of the program, such as

detecting unspecified receptions, unexecuted transitions etc. Also, the information transfer

phase of a full duplex LAP-B protocol specified by the CFSM model will be analyzed. This

protocol illustrates a larger and more complex analysis.

The Big Mushroom and Smart Mushroom programs will be used to analyze the GO

BACK N protocol with a window size of 10, and the Token Bus protocol, which illustrates

some important aspects of the system state analysis.

A. CFSM MODEL

1. A Simple Four Machine Protocol

The specification of the protocol using the CFSM model is shown in Figure 33.

Each of the machines sends/receives a message/acknowledgment from another machine.

Machines 2 and 3 also have another send transition from state 1 to state 3. The FSM

description of the protocol is shown in Figure 34, and analysis results obtained by the

Simple Mushroom program are shown in Figure 35. The analysis generated 36 global states.

There are three unspecified receptions and one unexecuted transition. No deadlocks or

channel overflows are recorded. The maximum channel size is 2. These results are obtained

by simply entering the FSM text file into the program. This analysis would be very

cumbersome to do manually, even for a simple specification like this one.

48

MACHINE 1 MACHINE 2

+A,m3 -D,m2 +Dnp +Dml

2 22

MACHINE 3 MACHINE 4(I -A ml
-D,m4 C D,m2 -D,m2D~m3

22

Figure 33: Specification for the example four machine protocol

start
number_of_machines 4
machine I
slate I
trans -D 2 2
state 2
warts+A 13
machine 2
slate I
trans-D33
trans +D 21
state 2
trans +D 14
machine 3
state 1
trans -A 3 1
warts +D 2 2
state 2
irans -D 14
machine 4
state I
trans +D 2 3
state 2
trans -D 2
initialstate 1 I 11
finish

Figure 34: FSM text file for the example protocol

49

Izr~caiu aiMXI of : four Iald•I..m

I o1aoie 1 state TeiawLtloia I

I ft I to I other aueomha I fam'itlost I

1 I I 2 2 I
12 1 I r I

I -,Gbime 2 Sta te-amIitlm I

I Fro I to I other ma-hime I tma.wLtLo I

1 131 3 I *D I
I1 I2 I 1 IrD21 12 1 I4 D

I12111 -- I 4 - I T ---- ni I

I Machine 3 s3tat TzeawltLom. I

I Fr I To I other mIhiLm I fIaLtlom I

1 3 1 1 I a a I
1 121 2 I nD I

I 2 I1 I 4 I 30 I

I M'ckhm 4 Itate TramaLtLoem I

I Fro I to I other machim I TraftLon I

11121 3 I OD I
12111 2 I•D I

33IlIIIlT &I

1 K 1,3,3,, 1,33,3, 1,3,3,3, 1,3,3,101

-D 2 [2,D ,3, 1,3,3,3, 1,2,3,3, 13,9,8] 2
-D 3 [1,3,3,3, 3,2,D R, 1,3,3,3, 1,3,3,31 3
-A 1 1,3,,, 1,3,3,3, 3,A 3,3, 1,3,3,33 4

2 [2,D R,B, 1,3,3,3, 1,3,3,I, 1,3,3,33
-D 3 [2,0 3,2, 3,2,D ,, 1,3,3,3, 1,3,3,I3 S
4D 1 K 2,3,3,3, 2,9,8,2, 1,3,3,3, 1,3,3,31
-A 1 K 2,D ,3, 1,3,3,3, 3,A 2,,, 1I,3,3,3 7

3 [1,3,3,3, 3,3,D 3, 1,3,3,3, 1,3,3,33
-D 2 K 2,D 3,2, 3,3,D R, 2,3,3,3, 1,3,3,3] 5
-A 1 (1,3,3,9, 3,2,D 3, 3,A 2,,, 1,3,3,3] S
+D 2 3 1,3,3,3, 2,9,2,3, 2,3,3,3, 1,3,3,31 9

4 [1,3,3,I, 1,3,3,3, 3,A 2,3, 1,3,3,33
-D 2 K 2,D ,,, 1,3,3,3, 3,A 2,3, 1,3,8,33 7
-D 3 [1,3,3,3, Z,3,D 3, 3,A ,3, 1,3,3,3]

S K 2,D 2,2, 3,3,D 3, 1I,3,3,, 1,3I,3,3
-A 1 2,D 3,3, 3,&,D 3, 3,A 3,R, 1,3,3,33 10
+D 2 K 2,D 3,3, 3,2,3,3, 2,3,3,3, 1,3,3,33 11

4 K 2,3,a,3, 2,3,3,3, 1,3,3,3, 1,3,3,33
-A 1 K 2,3,3,2, 2,3,3,3, 3,A 2,2, 1,,19,21 12

7 K 2,D ,3, 1,3,3,3, 3,A 3,3, 2 ,3,3,33
*A 3 K 1,0 ,3, 1,a ,3,,, 3,2,9,1, 1,3,3,33 13
-D 3 [2,D 3,9, 3,8,D 3, 3,A 2,9, to,3,33 10
+D 1 [2,2,3,3, 2,2,9,3, 3,A 2,2, 1,3,3,33 12

S [1,2,2,9, 3,3,D ,3, 3,A ,9,3, 1,3,3,33
-D 2 1 2,D 9,3, 3,2,D 3, 3,& 2,2, 1,3,3,33 10

9 K 1,3,3,3, 3,2,2,2, 2,3,3,3, 1,3,3,3]
-D 2 1 2,D R,Z, 3,2,2,8, 2,3,3,3, 1,3,3,33 11
-D 4 K 1,3,3,3, 3,2,9,3, 1,2,3,D , 1,2,3,23 14

10 K2,0 2,2, 3,2,D 3, 3,A 9,3, 1,3,3,33
+A 3 1 ,D 2,2, 3,8,D 3, 3,3,3,3, 1,is,33 15

11 K 2,D R,B, 3,3,3,3, 2,3,9,3, 1I,3,3,3
-D 4 K 2,D 8,3, 3,9,3,3, 1,3,3,D , 1,3,3,1 14

12 K 2,2,2,2, 2,3,2,3, 3,A ,3, 1,3,3,33
+A 3 (1,3,3,3, 2,9,3,3, 3,8,3,3, 1,5,3,33 17

13 K 1,D ,3, 2 ,,,9,3, 3,2,2,2, 1,3,3,33
-D 2 K 2,D 0 ,3, 1,3,3,3, 3,3,9,3, 1,is,33 10
-D 3 K,D 1, ,X, 3,2,D 3, 3,2,9,3, 1,3,3,33 is
+D 1 [1,3,3,3, 2,3,3,3, 3,2,3,3, 1,9,3,Z] 17

50

-D 2 1 2,D .3,3, 3,2,3,3, 1,3,3,3 1,3,3,31 16
-A 1I 1,333 3,39,3,3, 3,A B3,3 ,33 19
40 3 C1,333 3,2,3,9.1,,, 2,8,B,21 20

15 C, 1, .3,3I, 3,8,D 83, 3,3,9,19, 1,3,3,33
-0 2 (2,D D .3,3, 3,&,D 3, 3,3,3,3,1,,33 21

16f 2,D .3,8, 3,2,2,9, 1,2,3,D , 1.,3,,33
-A 1I 2,D .3,2, 3,2,2,2, 3,A B,3, ,333 22
4D 3 C2,D X3,R, 3,X,8,3213,,, 2,2,2,21 23

17 C ,.,,2,3,3,3, 3,2,8,2, 1333
-D 2 (2,D 9,2, 2,3,3,3, 3.,2,3,, . ,33 24

14 2,D D .3,3, 2,2,2,3, 3,2,2,39, 1,3,3,33
-3 3 C2,3 D .3,X, 3,3,D X3, 3,3,3,3, 1,3,3,33 21
4D 1I 2,D B3,X, 2o,3,3,, 31 ,3a,33, 1,3,3a,3a 24

19 C ,,,,3,2,2,3, 3,1 X3D* ,,33
-D 2 1 2,D 2,3, 3,3,2,3, 3,A Z,D, , 1,3,3,33 22
40 3 C1,333 3,2,2,3, 3,1 .3,3, 2,5,9,33 25

20 2 ,9,2,3, 3,9,2,3,13,,, 2,2,2,21
-D 2 C2,D ,3,3, 3,3,3,3, 1,,,,2,9,3,R3 23
-A 1 (,,,,3,3,3,3, 3,A 23,2, 2,9,9,21 25
-D 2 C ,,,,3,2,3,3, 1,3,3,3, 1,3,3 33 26

21 C2,3 D3 3,9, 3,3,D 3R, 3,3,3,3, l,3,3,3j''*****0unpeo~fIed eqls****
22 C2,D 23,3, 3,2,3,3, 3,A .3,D , 1,9,2,33

4A 3 C ,3 .3,2, 3,3,3,3, 3,3,2,3 ,333 27
+D 3 C2,D .3,9, 3,3,3,3, 3,1 23,2, 2,2,2,21 24

23 C2,D .3,3, 3,3,9,3213,,, 2,3,3,33
-A 1I 2,D 23,39, 3,2,2,2, 3,A B3,3, 2,3,3,33 24
-D 2 (2,D .3,3, 3,3,3,2, 1,3,2,2, 1,3,3 R33 29

24C 2,D 23,9, 2,3,3,3, 3,2,3,3, 1,9, 3,3Z)**********Ubapeaified Reception***C**C*****
25 C1,32,3R,3, 3,9,3,3, 3,1 R,3, 2,9,3,31

-D 2 C2,D R3,R, 3,3,3,, 3,1 .3,R, 2,3o,3,3 26
-D 2 C ,..,3,X,3,3, 3,1 .3,2, 1,9,D 33 30

26 C1,333 3, 3,39,3, 1,32,3,3Z, 1.3. 2,D33Z
-D 2 C2,D 23,2, 3,2,9,3913,,, 1,3,D R3) 29
-a 1 1L,3,3,3, 3,3,3,3, 3,1 B3,3, 1,3,3 831 30

27 I ,3 .3,3, 3,2,2,2, 3,3,3,3 , 1,3,3,33
-D 2 C2,D D 23,3, 3,3,3,3, 3,3,3,D ,333 31
4D 3 C ,3 93,3, 3,3,9,3, 3,3,9,3, 2,3,3,23 32

29 C2,D 23,2, 3,X,2,3, 3,A 83,3, 2,3,3,21
41 3 C ,3 23,2, 3,8,3,2, 3,2,8,2, 2,3,3,33 32
-D 2 C2,3 z3,3, 3,3t,3,3, 3,A12133, 1,3,3 A3] 33

29 C2,0 23,3, 3,3,9,3,133, 1,3,3 833
-A 1 C 2,D .3,8, 3,2,3,2, 3,1 83,2, 1,3,3 R3) 33

30 C ,3,3,3, 3,3,3,3, 3,A .3,3, 1,3,3 .33
-It 2 C 2.3 B3,R, 3,3,3,3, 3.1 .3,R, 1,3,3 .31 33

31 2,0 D 23,3, 3,3,3,3, 3,2,2,0 ,333
4D 3 C 2,0 D .3,3, 3,9.,3,, 3,2,3,3, 2,3,3,33 34

32 C ,3 23,3, 3,2,9,8, 3,2,2,2, 2,3,3,33
-D 2 C2,D D 23,3, 3,93,9., 3,3,3,2, 2,3,3,33 34
-D 2 C ,3 93,3, 3,9,9,3, 3,2,3,2. 1,3,3 .33 35

33 C2,D .3,9, 3,3,3,3. 3,1 83,3, 1,3,D .33
41 3 C 1,3 .3,B, 3,2,2,3, 3,3,3,3, 1,3,3 B3) 35

34 C2,D D .3,B, 3,2,2,2, 3,2,2,2, 2,3,3,33
-D 2 [2,D D 93,8, 3,23,2., 3,3,3,3, 1,3,3 .33 36

35 C ,3 23,2, 3,3,z,&, 3,3,2,3, 1,3,3 213
-D 2 1 2,D D 23,2, 3,3,2,3, 3,2,2,2, 1,3,3 R3) 36

36 1 2,3 D 19,3, 3.,3,2,, 3,2,2,3, 1,3,3 213*********40Uawecified 3ctc"****

mWOMW Or RWAXXuTr AMzzuz (hUaz.TzS caWna!3)

Total numer of atatem generated 36
number of states analyzed :36
amber of deadlocks. 0
a.~e of unspeci fied receptions 3
saxmala sm..age queue sine 2
channel Overflow :N33

I Machine 2 Unaexeuted Transitions

1 True 1 To I other machline I Umezecuted Transition I

1 2 1l I 4 1 r D

Figure 35: Program output for the example protocol

51

2. Analysis of Information Transfer Phase of the LAP-B Protocol

In this Section, analysis of a Data Link Control (DLC) protocol is described using

the Simple Mushroom program. The LAP-B protocol is modeled and analyzed with CFSM

model [Ref. 14]. A simplified analysis of the information transfer phase of the protocol,

which includes only I-frames with a window size of 2, will be described below.

This analysis is important in two ways. First, it verifies that the program is correct

by obtaining the same analysis results as in [Ref. 14]. Secondly, it is a good example to

show that the total number of global states can be very large, even for such a limited

protocol. The description of the information transfer phase is explained below as it appears

in [Ref. 14].

The network nodes, which are connected by the protocol, consist of a Data

Terminal Equipment (DTE) and a Data Circuit Terminating Equipment (DCE). In this

model, DTE and DCE are considered process I and process 2 respectively. Each of these

processes are also modeled as three sub-processes: Sender, Receiver and Frame Assembler

Disassembler (FAD), which are numbered as I or 2 according to their process numbers.

Figure 36 shows the processes and how they are connected. The FAD process

combines data blocks from the Sender with acknowledgments from the Receiver, into

complete I-frames and sends the I-frames to the FAD of the other process. The FAD also

breaks up the I-frames received from the other FAD and sends the acknowledgment to the

Sender, and data blocks to the Receiver.

I-frames are expressed by the notation "lnm", where n is the send sequence

number N(S), and m is the receive sequence number N(R). The message "Di" is a data

block sent from the Sender to the FAD, or from the FAD to the receiver; it is the data block

which is to be placed in, or which is taken out of, the I-frame. The "i" in "Di" is the send

sequence number. The message "Ai" is an acknowledgment with a receive sequence

number of i.

52

zz _

CAA

zz

U,

Z I-

S a53

The finite state machines for the Sender, Receiver and FAD of the DTE are shown

in Figures 37, 38 and 39. The FSMs for the DCE are the same except that FADI,

RECEIVER I, and SENDER I must be replaced with FAD2, RECEIVER2, and SENDER2

respectively. Since no RR-frames are used, I-frames can only be acknowledged by

receiving an N(R) from an incoming I-frame.

As an example, suppose the DTE Senderl has 3 data blocks to send. It can go

from state I to state 2, sending "DO," and then to state 3, sending the second block as "Dl."

At this point, 2 data blocks are outstanding, so it must wait for an acknowledgment of at

least one of them before sending the third.

The DTE FAD I process, initially in state 1, will receive the DO from Senderl and

enter state 2. It then sends an "enquiry" to the Receiverl to get the latest acknowledgment,

an N(R), for the data blocks received from the DCE.

Since no data blocks have been received by the DTE yet, Receiverl will respond

with an "AO." FAD I will receive the AO, and will transition from state 8 to 11. The FAD I

will then return to state I sending the I-frame "100." Similarly, the FADI will receive the

second data block, Dl, and transmit it as "110" after combining with "AO."

FAD2 will receive the "100" frame first, entering state 20. It then splits this I-

frame and sends the "DO" to Receiver2, and "AO" to Sender2.

Sender2 is in state 1, and simply discards this "AO." Receiver2 is in state 1,

accepts the "DO" data block and transitions to state 2.

Similarly, The DCE FAD2 process receives the "110" message, and sends the

"Dl" to Receiver 2, and "AO" to Sender 2. Sender 2 will discard the "AO", remaining in

state 1, and Receiver 2 will receive "Dl," transitioning to state 3.

Suppose at this point a user data block becomes available to send at the DCE. It

will send an "102" frame across the data link to the DTE; and upon receiving the 102, the

DTE will now be able to send the third user data block.

54

4 ÷l
÷l- S - '

- 55

hi
4

- -i

'4-i

hi

z s-i
U

+

@0
hi

+

hi

hi

56

16''

s
no

Im ONO

z IN +0

+*

572

e4.

400

> I-

r X.0

58

For the automated analysis of the protocol, the FSMs in Figures 37, 38, and 39 are

converted to a text file and entered into the program as shown in Appendix A. The

transition names in this text file are the same as in the FSM diagrams, such as "+I00",

"+DO" etc. In order to save memory and generate a larger number of states in the analysis,

the transition names can be abbreviated to single characters at the time of the analysis as

shown below:

DO -> X I00 ->1
DI ->Y I01 ->2
D2 ->Z 102 ->3
AO ->A I10 ->4
A1 ->B IlI ->5
A2 -> C 112 ->6
ENQ -> Q 120 ->7

121 ->8
122 ->9

The amount of memory available and the CPU time are always a concern for a full

reachability analysis. The program output for the analysis is partially given in Appendix A.

Because of the size of the analysis, only a very small portion of the reachable states are

included in the output. The total number of global states generated for the information

phase was 73391. There were no unspecified receptions, unexecuted transitions, and

channel overflows. The maximum channel length was 6. A deadlock condition was found

at state 17034 where all the channels were empty and Senderl, Receiverl, FADI, FAD2,

Sender2, Receiver2 were in states 3, 3, 1, 1, 3, 3 respectively. This state deadlock is

expected since RR-frames are not included in the analysis. A more detailed explanation

including the RR-frames in the protocol is given in [Ref. 141. The reader may note that the

results of the analysis exactly match with the results reported in Reference 14. The

deadlock state found in Reference 14 was 67699, which was recorded at state 17034 in this

analysis. However, the global states are the same for both analyses. The Simple Mushroom

program uses a Breadth-First Search algorithm for choosing the states from the work set

59

(i.e, global states that are generated, but have not been analyzed yet). The protocol verifier

PROVE, used in Reference 14 might be using a Depth First Search approach, which would

result in a different global state number.

The protocol, including the RR-frames, was also entered into the program, but the

program could not complete the analysis due to insufficient computer memory. In this

analysis, 153565 global states were generated. No unspecified receptions, deadlocks or

channel overflows were recorded for the analyzed portion of the protocol. The maximum

channel size reached was 4. The program completed the analysis in 11 hours 51 minutes on

a Sun SPARC station.

B. SCM MODEL

1. Go Back N

The first protocol selected for analysis using the Big Mushroom and Smart

Mushroom programs is a 1-way data transfer protocol with a variable window size, which

is essentially a subset of the High-level Data Link Control (HDLC) class of protocols. This

protocol is modeled and analyzed with the SCM model in [Ref. I]. The same specification

will be used here and an automated analysis will be described using the programs

developed for a window size of 10. The specification is summarized below:

There are two machines in the system, a sender (ml) and a receiver (m2). The

sender sends data blocks to the rc-eiver, which are numbered sequentially, 0, 1,.... w, 0, 1,

... for a window size of w. As in HDLC, the maximum number of data blocks which can be

sent without receiving an acknowledgment is w, the window size. The receiver, m2 ,

receives the data hlocks and acknowledges them by sending the sequence number of the

next data block expected (which is stored in local variable exp). The shared variables

DATA and SEQ are used to pass messages from sender to receiver, and the shared variable

60

ACK is used to pass acknowledgments back to the sender. The receiver may acknowledge

any number of blocks received up to the window size. Upon receiving the

acknowledgment, the sender must be able to deduce how many data blocks are being

acknowledged. This is done by observing the difference between the values of the received

acknowledgment anJ ti1e sequence number of the last data block sent.

The general specification of the protocol is given in Figure 40 and in Table 4.

Initially, both sender and receiver are in state 0, arrays DATA and SEQ are empty, and

ACK is empty. The domains of DATA, Rdata and Sdata are not specified; these are used

to hold user data blocks. Sdata and Rdata are the interface or access points of the higher

layer (user) protocol. The local variables for the sender are Sdata, used to store data blocks,

seq, used to store the sequence number of the next data block to be sent out, and i, used as

an index into the DATA and SEQ arrays. Initially seq is set to 0, and i is set to 1. The local

variables of the receiver are Rdata, exp, andj. Rdata is used to receive and store incoming

data blocks, exp to hold the expected sequence number of the next incoming data block, and

j is an index into the shared arrays DATA and SEQ.

The states of both sender and receiver are numbered 0, 1, ..., w, and each state has

an easily recognized intuitive meaning. If the sender is in state 0, then all data blocks sent

to date have been received by the receiver, so a full window size of w data blocks may be

sent without waiting for an acknowledgment. If m, is in state w, then a full window of

blocks have been sent, so the sender can only wait for the acknowledgment from the

receiver.

If the receiver, m2, is in state 0, then all received data blocks have been

acknowledged. If in state w, then a full window of data blocks have been received, but not

acknowledged. Whenever the receiver sends an acknowledgment, all data blocks received

up to that point are acknowledged.

61

"0 1 DATA SEQ 0

- A 2 +D

1 +A. 1 -A
-ED D+A, D

2 2

+A. ACK+Di -

1 2 w

seq: (0,1,2,...,w) exp: (0,1,2,...,w)
i: (1,2,..., w) j: :(1,2,....,w)

Figure 40: State machines and variables for Go Back N

TABLE 4: PREDICATE-ACTION TABLE FOR GO BACK N

Transition Enabling Predicate Action

DATA(i) -- Sdaa(i)
-D DATA(i) = A A SEQ(i) = E SEQ(i) -- seq

inc(i, seq)

ACK • k =seq A ACK * e ACK --
+Ak (next state k)
(05 k: w)

DATA(I) E A SEQ() = exp Rdata -DATA(Q)

+D DATA(I), SEQ(j) 4-
inc (j, exp)

-A
DATA() =E ACK 4-exp

Rdata E-

62

The enabling predicate and action for each transition are shown in Table 4. The

label or transition name is the leftmost column, the enabling predicate in the middle, and

the corresponding action on the right. There are four basic types of transitions. In the

sender, m1 , the -D transition transmits a data block by placing it into the shared variable

DATA(i), and the sequence number into SEQ(i). The send is enabled whenever those

variables are empty. (The inteaction between the sender and the user, or higher layer, is

implicit, and not specified here). The inc operation increments its arguments, if less than

their maximum value, in which case it resets them to the minimum value. The operator $

represents the inc operation repeated k times, if the argument is k and the symbol c denotes

the empty value. The receive transition in the receiver, m2 , is enabled whenever a data block

of the appropriate sequence number is in the jth element of DATA and SEQ. An

acknowledgment may be sent by m2 in any state except 0, in which case no unacknowledged

data blocks have been received.

The remaining transition is the +Ak receive acknowledgment, in mi. If m, is in

state u, 1 _ u 5 w, and there is a nonempty value in shared variable ACK, then exactly one

of the transitions +AO, +A,, ..., +Aw., will be enabled; it will be that Ak such that the

predicate ACK~k = seq is true, and the next state is k. [Ref. 1]

For analyzing this protocol using the Big Mushroom and Smart Mushroom

programs, the inputs to the program must be completed. These consist of a text file

description of FSMs, the package, definitions, which include the variables of the protocol,

and the subprograms AnalyzePredicatesMachines and Action, which define the

predicate-action table. Also an OutputGtuple procedure, which defines the output format

for the global tuples, must be entered. Completed packages/procedures for a window size

of 10 are given in Appendix B.

The same names are used for local and shared variables in the package definitions

as in the predicate-action table. Variables DATA, ACK and Sdata are declared as one

63

dimensional arrays of size 10, which is the window size. Local variables seq and exp and

index numbers i andj are declared as integers in the range 0 to 10. Global variable ACK is

declared as integer in the range -I to 10, where -1 represents e value in the predicate-action

table. An enumeration type, buffer type, is declared for storing the data passed by the upper

layer to local variable Sdata. Data are declared as dO, dl, .., d9,e, where e represents the e

value. Transition names in the specification are defined as snddata, rcvdata, snd_ack,

rcvacki for -D, +D, -A, and +Aj in predicate-action table respectively.

Actions and predicates are also translated to Ada statements in the subprograms

Analyze_predicates_Machines and Action. For each state in both machines there is a

"when" statement. The predicates for the outgoing transitions from that state are translated

to Ada with "if' conditional statements. Actions in the predicate-action table are converted

to Ada statements with "when" statements (see Appendix B).

The program generated 286 system states and 31,460 global states, which are

identical with the results obtained by the formulas given in [Ref. 11. The protocol is free

from deadlocks and there are no unexecuted transitions. The difference between the

number of system and global states shows the power of the system state analysis which

reduced the number of states in the reachability graph exponentially. However, without the

Smart Mushroom program, the system state analysis would be cumbersome to do manually,

and the global reachability analysis would be infeasible.

2. Token Bus

Another example of the program application, the token bus specification in [Ref.

151 will be used. The specification is a simplified one. It assumes that the transmission

medium is error free and all transmitted messages are received undamaged. Both the system

state analysis and global analysis are generated from this token bus specification for a

protocol consisting of 8 machines.

64

The specification of this simplified protocol is given in Figure 41 and Table 5. The

FSM diagram and the local variables are the same for each machine, where the transition

names: ready, rcv, pass, get-tk, pass-tk, Xmit, and moreD are appended with the

corresponding machine number to the end for each machine in the specification. For

example, transitions for machine 7 are named as ready7, rcv7, pass7, etc. This makes it

easier to follow the reachability graphs. The remainder of the protocol specification as

described in Reference 15 is as follows: The shared variable, MEDIUM, is used to model

the bus, which is "shared" by each machine. A transmission onto the bus is modeled by a

write into the shared variable. The fields of this variable correspond to the parts of the

transmitted message: the first field, MEDIUM.T, takes the values T or D, which indicate

whether the frame is a token or a data frame. The second field contains the address of the

station to which the message is transmitted (DA for "destination address"); the next field,

the originator (SA for "source address"); and finally the data block itself.

The network stations, or machines, are defined by a finite state machine, a set of

local variables, and a predicate-action table. The initial state of each machine is state 0, and

the shared variable is initially set to contain the token with the address of one of the stations

in the "DA" field.

The value of local variable next is the address of the next or downstream neighbor,

and these are initialized so that the entire network forms a cycle, or logical ring.

The local variable i is used to store the station's own address. As implied by the

names, the local variables inbufand outbuf are used for storing data blocks to be transmitted

to or retrieved from other machines on the network. The latter of these, outbuf, is an array

and thus can store a potentially large number of data blocks. The local variable ctr serves

to count the number of blocks sent; it is an upper bound on the number of blocks which can

be sent during a single token holding period. The local variablej is an index into the array

outbuf.

65

I DA SA data

MEDIUMIIIII

i :(my address)

pUS sel.&k Passjk naext : (address of next statiom)

citr :(1,2,...,k+I)

DA SA dta t DA SA data

IiIlI I *U0hf I

Figure 41: FSM and variables for the network nodes

The local variables j and ctr are initially set to 1, and inbuf and oaabuf are initially

set to empty. The shared variable MEDIUM initially contains the token, with the address of

the station in the DA field. Thus the initial system state tuple is (0,0, ... , 0) and the first

transition taken will be get-tk by the station which has its local variable i equal to

MEDIUM.DA.

Each machine has four states. In the initial state, 0, the stations are waiting to

either receive a message from another station, or the token. If the token appears in the

variable MEDIUM with the station's own address, the transition to state 2 is taken. When

66

taking the get-tk transition, the machine clears the communication medium and sets the

message counter etr to 1. In state 2, the station transmits any data blocks it has, moving to

state 3, or passes the token, returning to state 0. In state 3, the station will return to state 2

if any additional blocks are to be sent, until the maximum count k is reached. When the

count is reached, or when all the station's messages have been sent, the station returns to

state 0.

The receiving station, as with all stations not in possession of the token, will be in

state 0. The message will appear in MEDIUM, with the receiving station's address in the

DA field. The receiving transition to state 1 will then be taken, the data block copied, and

MEDIUM cleared. By clearing the medium, the receiving station enables the sending

station to return to its initial state (0) or to its sending state (2).

TABLE 5: PREDICATE-ACTION TABLE FOR THE NETWORK NODES

Transition Enabling Predicate Action

rcv MEDIUM.(t, DA) = (D, i) inbuf --MEDIUM.(SA, data)

ready true MEDIUM +- 0

get-tk MEDIUM. (Q, DA) = (T, i) MEDIUM 4- 0; ctr +- I

pass outbuf[] = 0 MEDIUM +- (T, next, i, O)

Xmit outbuf U1 o MEDIUM -- outbuf [j;
ctr4- tr l;j -- j) 1
outbuf [U o

moreD MEDIUM = 0 A outbuf [J * 0 null

pass-tk MEDIUM = 0 A MEDIUM +- (T, next, i, o)
(outbuf[jJ =0vctr=k+1)

67

The symbol "0" indicates that the variable should be incremented unless its

maximum value has been reached, in which case it should be reset to the initial value. The

notation MEDIUM.(t, DA) is used to denote the first two fields of the variable MEDIUM.

For example, MEDIUM.(t, DA) = (T, i) is a boolean expression which is true if and only if

the first field of MEDIUM contains the value T, and the second field contains the value i.

Other notations in the predicate-action table such as " "v", "--" etc. are intuitive.

The inputs to the program for the reachability analysis of this protocol are given

in Appendix C. The same names as in the specification are used for the local and global

variables in the package definitions. Also, the "empty" value is represented by "E" and the

data are represented by "I" in this package. The upper bound on the number of data blocks

in the outbuf variable is set to 7.

The system state analysis alone did not give a complete analysis due to some

loops in the FSMs of the SCM specification. Since the system state analysis assumes that

two system states are equivalent if both the machine state tuples and the outgoing

transitions are the same, this can cause the system state analysis to give insufficient results

in some special cases. For example, incomplete results can arise when the FSMs of the

specification include some loops that result with the same states and enabled transitions

repeatedly. In such specifications, some of the transitions will stay unexecuted, resulting an

incomplete analysis. This situation is observed in this specification when one of the

machines had two or more data blocks in its outbuf local variable. For instance, if machine

I has two data blocks in its outbuf local variable waiting for transmission and it receives

the token from MEDIUM, it transitions to state 2 with get-tk and then takes the Xmit

transition to state 3, sending the first data block. Since it has one more data block to send,

the next transition will be moreD , which will take it back to state 2. At this point the system

state analysis will stop and the reachability analysis will be incomplete.

68

The problem can be solved by splitting the system state analysis into three pans.

First, the protocol can be analyzed with no messages in the machines and the behavior of

the machines including only the transitions of the token can be observed (transitions get-dc

and pass). Then, the analysis can be performed with one message in the outbuf local

variables of the machines, which allows us to analyze the transitions for receiving/

transmitting the messages in addition to the transitions including the token (get-tk, Xmit,

rcv, ready, pass-tk). Finally, the protocol can be analyzed with each machine having more

than one message, which includes the last transition in the analysis (moreD). Combining

the results of these parts shows that the protocol is free from deadlocks and there are no

unexecuted transitions.

The definitions packages and the analysis results are given separately for each of

the three cases outlined above in Appendix C. The system state analysis generated 16,40

and 5 system states respectively for the parts explained above. The global analysis has

generated 263 global states and there were no deadlocks or unexecuted transitions. The

global reachability analysis is also given in Appendix C.

The system state analysis has reduced the number of states from 263 (global) to

61 (for all three parts). This is another example showing the advantage of the system state

analysis.

69

VI. CONCLUSIONS AND FURTHER RESEARCH POSSIBILITIES

In this thesis, a software tool has been described which automates the analysis of

protocols specified by the SCM and CFSM models. The program generates either the

system state analysis or global reachability analysis for the SCM model. The program also

generates the full reachability graph for a protocol specified by the CFSM model.

The major achievement of the thesis was the increase in the number of machines in the

protocol specification. The previous work in [Ref. 8] was extended to allow two to eight

machines in the specification. The run time and memory efficiency of the program were

improved to allow the analysis of larger and more complex protocols. The user interface of

the program has also been improved.

The system state analysis reduces the size of the state space greatly, but in some cases,

when the system state analysis is not sufficient for the protocol analysis, the global

reachability analysis is required. The Smart Mushroom program generates the system state

graph. The Simple and Big Mushroom programs are based on exhaustive analysis, and

generate the full global reachability graph. The main problem in these programs is the

"state space explosion." As stated in [Ref. 16], an estimate for the maximum size of the

state space that can be reached for a full reachability analysis is about W05 states. This is in

agreement with the maximum number of states generated so far using the Big Mushroom

program (153565 = 1.53 x 105 states were generated for the example protocol described in

Chapter V).

The size of the state space which can be generated is directly proportional with the

memory available on the computer. For a full reachability graph, an equation can be derived

for determining the maximum number of states: where,

70

M: Memory available on the computer (bytes).

S: Amount of memory for storing one system state (bytes).

0: Overhead (memory for storing the program and other data structures etc.).

Then, the number of states that can be analyzed is: N = (M-O)/S. Usually 0 << M, and

0 can be ignored. For instance, for the LAP-B protocol analysis described in Chapter V,

M=80 MBytes, S = 516 bytes, and N = 162596. In this analysis, only 153565 states were

generated by the Simple Mushroom program. The difference between these numbers is due

to the exclusion of the overhead in the calculation. Unfortunately memory was not enough

for a 100% coverage in this analysis.

In spite of the state space explosion, the programs developed in this thesis are still very

helpful for analyzing protocols. A full reachability analysis may be feasible by keeping the

protocol specifications as simple as possible, and using certain assumptions about the

behavior of the protocol to reduce the size of the state space. For example, the size of the

message queue is very important for the CFSM model. A smaller message queue decreases

S and allows to analyze larger protocols. A specification with less number of processes

increases the number of states that can be analyzed. Modeling the machines with less

number of states is also helpful. For the SCM model, N can be increased by keeping the

size of global and local variables as small as possible. A simpler protocol specification also

reduces the run time.

But, in some cases, even after some simplifications, a full reachability analysis is

impossible. Fortunately, still some solutions exist for the automated protocol analysis. One

method which is described in [Ref. 161 is using the supertrace algorithm. In the Mushroom

program, hashing is used to increase the search efficiency. In the supertrace algorithm a

very large hash size (almost the whole available memory) is used, and system states are not

stored. This method is explained in [Ref. 161. For example, with a 10 MB of memory, 80

million states can be generated using this method as described in [Ref. 161. Of course this

71

efficiency does not come free. Due to hash conflicts, this method cannot guarantee 100%

coverage, but as a partial search technique, this algorithm is very powerful.

This thesis opens several areas for further work. One improvement would be to

increase the size of the system space that can be analyzed. Adding the supertrace option to

the Mushroom program can bp a good area for further work.

The number of reachable states is usually very large and it would be awkward to print

out or browse through the listing. Another improvement would be to store the reachability

analysis results in the form of a database, and provide a query language that allows the user

to easily analyze the results of the analysis as suggested in [Ref. 171 (for instance, querying

the error sequences and certain paths between any two states etc.).

Finally, another research possibility would be to add a simulator module to the

Mushroom. For protocols with a large size of state space, where full reachability analysis

is infeasible, simulation would be useful.

The Ada programming language was used to develop Mushroom. Also, specification

of the SCM model must be entered to the program using Ada subprograms and packages.

Ada is a well-structured programming language, and supports the modular development of

programs. Also, exception handling, generic units, and tasking are important features of

Ada. These features were helpful in developing the program. The well-structured property

of the programming language makes the input of the specification easier. The tasking

mechanism of Ada would be very helpful to develop a simulator module flf" the program.

The Simple Mushroom program is used as a teaching aid in an introductory

communications network course at Naval Postgraduate School. This can be another area

where student can use the tool as an aid in learning the protocol design and analysis.

"The mushroom program is a tool which it is hoped that it will greatly improve the

design and analysis of protocols specified by the SCM and CFSM models. Especially, this

72

program may help to solve some questions concerning the SCM model which have not been

completely answered.

73

APPENDIX A (LAP-B Protocol Information Transfer Phase)

FSM Text File

start
member ofmahnes; 6
maeime 1

at.* 1
ta." +4A0 1 3
tran -DO 2 3
stat. 2
t•awa +A0 2 3
trams -DI 3 3
trans +A1 4 3
stat.e 3
trans +.O 3 3
t.wa. +&I S 3
twans +12 7 3
state 4
trans +At 4 3
trans -D1 5 3
stat. 5
twang +A1 S 3
twang +J2 7 3
twans -02 6 3
st a t e 6

twana +÷1 6 3
twans +10 1 3
twans +A2 S 3
state 7
twang +J2 7 3
twans -D2 S 3
state

twans +A2 8 3
twang +A0 1 3
twans -DO 93
state
twans +X2 9 3
twram +1O 2 3
twans +A1 4 3
macisne 2
state 1
tea• +=3Q 4 3
twans 40 2 3
s.t.e 2
t•ans +339 5 3
twam& +D1 3 3
atate 3
tw..a +=3Q 6 3
twang +D2 1 3
state 4
twans -A0 1 3
state 5
twran -s 1 2 3
state 6
trams -A2 3 3
mobism, 3
state 1
twans +DO 2 1
twang +D1 3 1
twans +02 4 1
twans +100 20 4
twans +÷10 21 4
twln +x20 22 4
twans +x01 23 4
trans +111 24 4
twram +121 25 4
twans +202 26 4
twans +112 27 4
twram +122 26 4
atate 2
twang -3M9 S 2
state 3
twang -339 9 2
state 4
twan" -WO9 10 2

74

state a
trams +aO 11 2
tram. +&1 12 2
tram. a2 13 2
state 9
trans 4&0 14 2
trans 4i 15 2
tram. W2 16 2
state 10
trams +4A 17 2
tran. 4. 18 12
tramn 4.2 19 2
state 11
trans -ZOO 1 4
state 12
trans -201 1 4
state 13
tram. -202 1 4
state 14
tram. -210 1 4
state 15
tram. -211 1 4
state 1I
t.ram -212 1 4
state 1'
tram. -X20 1 4
state 1I
trans -221 1 4
state 19
trans -Z22 1 4
state 20
tran. -DO 29 2
state 21
tranm -D1 29 2
state 22
trams -D2 29 2
state 23
tram. -DO 30 2
state 24
tranm -DI 30 2
state 25
tram. -v2 30 2
state 26
t.ranm -DW 31 2
state 27
trams -Dl 31 2
state 28
tranm -o2 31 2
state 29
tran. -AO 1 1
state 30
trans -a1 I 1
state 31
trans -A2 1 1
imak." 4
state 1
trans +D0 2 5
trans 401 3 5
trans 4o2 4 S
trans +200 20 3
trams +IlO 21 3
trans +x20 22 3
tranm +201 23 3
tranm +2ll 24 3
trans +221 25 3
trans +202 26 3
trans +212 27 3
trans +z22 23 3
state 2
tran. -3on 1 6
state 3
trans -3" 96
state 4
trans -3O0 10 6
state a
trans 430 11 6
trans +&1 12 6
trans +&2 13 6

"75

state 9
trams +A0 14 6
tra•s +*A 19 •
trams 4&2 16i
state 10
trans 4&O 17 6
trams • A1 10 6
trans +A2 19 6
state 11
trans -ZOO 1 3
state 12
trams -101 1 3
state 13
trans -102 1 3
state 14
state 13
trams -111 1 3
state 16
trans -112 1 3
state 17
trams -120 1 3
trans -110 1 3
trams -DO 9 4
state 1I
two" -121 1 3
state 19
trans -122 1 3
stat* 20
trans -DO 29 6
state 21
trams -D1 29 6
state 22
trans -D2 29 6
state 23
trans -DO 30 6
state 24
trans -Dl 30 6
state 25
trans -02 30 6
state 26
trans -DO 31 6
state 27
trans -DI 31 6
state 20
trans -D2 31 6
state 29
trans -AO I 5
state 30
trams -Al 1 5
state 31
trans -U2 1 S
machine S
state 1
trans +AO 1 4
trans -DO 2 4
state 2
trans *AO 2 4
trans -Dl 3 4
trans +4A 4 4
state 3
trans +AO 3 4
tra•s +*A 5 4
trams +A2 7 4
state 4
trans +AX 4 4
trams -DI S 4
state S
trans +AI 5 4
trams +A2 7 4
trans -D2 • 4
state 6
trams +Al 6 4
trans +AO 1 4
trans +L2 1 4
state 7
treas +*2 7 4
trans -02 S 4

76

stat. 8
tzw,• A2 S 4
trs.s 4+A 2 4
ts. -00 0 4
.tate 9

tU.VR +A2 9 4
t•wa. 4"A 2 4
trams +A, 4 4

stat. I
ta.. *Spa 4 4
txa.u 400 2 4
atate 2
tzaa. +339 S 4
twa.. 401t 3 4trams• +01 3 4

st~ate 3
tra. +3Q 6 4
twZa. +D2 1 4
state 4
trams -AO 1 4
state 5
tzua. -Al 2 4
state 6
tress -h2 3 4
iLitial tate I 1 1 1 1 1
f•insh

Program Output

RZACUlWZLITY AINS1SIS of fad.fma
SPICxIFCAT!OV

I Machine 1 State Transitions

I Troia I To I other machine I Tranition I

I1 I1 3 rh JO
1 2 3 a DO
2 2 3 r AO
2 3 3 a D1
2 4 3 r JAl

1 3 13 1 3 1 ri O
1 3 S 1 3 I r Al
1 3 7 I 3 1 rA2
1 4 14 1 3 I i IL
1 4 IS I 3 a Dl

5 5 3 r I Al
5 7 3 r JA2
5 6 3 I D2
6 6 3 I r nl
6 1 3 1 rio
6 I 3 1 r A2
7 7 3 I rA2
7 8 3 I a D2

I S I 8 I 3 1 r A2
I I 1 3 1 r iO
I S I 3 1 aDO
I 9 19 3 I r A2
9 1 2 3 I r O I
9 14 3 I r n 1 I

77

I Machine 2 State Transitions I

I From I To I other imacbin. I Transition I

I1 14 1 3 r WOI I
11121 3 r rDO I
12151 3 r noU I
12 3 1 3 r rDI
I3 16 1 3 IrQ I
I3 1i 1 3 r rD2

1 4 1i I 3 1 asAD
1 5 1 2 1 3 1 a A1
1 6 1 3 1 3 1 A12 I

I Macbin. 6 State Transitions I

I From I To I other imacbin. I Transition I

1 1. 14 1 4 1 r ZUQ I
1 1. 12 1 4 1 r DO I
1 2 I1 5 I 4 1 r Q I
1 2 1 3 1 4 1 r Dl I
1 3 1 6 I 4 1 r IMO I
1 3 1i 1 I 4 1 r D2
I 4 1i 1 I 4 1 a1 AD
I 5 1 2 1 4 I sa U
I 6 1 3 1 4 I a A2 I

REACHABILITY GRAPH

I1I 1,E,.EXEEE, 1,EXEEE IEEEZI 1EEEJ 1,E, IE EE,, 1,EXEAEEE
-DO 31 2,FqD0,EEA 1,EEAEE, 1,EEEFEK I,EXE,,EE, 1,EE~EXEFEEXEJ 2
-DO 4 1 ,XF ,FF,1EXE 1EXE AF0E XEE 3

21 2,EDO XE, IX EEXEE, 1,KEXEXEEE IEEEE 1,XEEAEEE I,MEKEEE
-DI 31 3,E,*DlD XEEE I.E"EXEEE I.EEXE,, ,,,,E 1,EEX , IEXEE, 1,EEEE 4
+DO I (2EEE SXEF ,ME AXXIKKX1EE~
-DO 4 12,EDO,,E,E 1,EEF~EAIE, 1,EEEEE ,F,,E 2,MEZbX 1,FEXEEEE 6

31lF 1,EEE EE, 1,EE,,E E, IF.EFE KKE EEEE,2EE,,D, 1,E,,E&EEJ
-DO 312EOEIFE K-EXEE2MDXXEE 6

+DO 5 1 I1,EEU EX,F.EI,IEEFqE,2XE,1 ,EXEJIEE, 7
-DI 4 1 1,EEXEEE 1,E EE, IXEE 1,KEE,3,EJEDODI,Ed, IEAEEE 9

41 3XEDO Dl ,,FqEA lE,YEEE, lI,EXqEAE IEXEEEE lEEE,, lEEAEE,
+DO I113,EDI AEAE 1,EXEEX 2,EEEE 1,EEEMEE IXXEZE, IEEXE]EE 9
-DO 4 (3.E.DO DI AEA E,EX ,JFEM 1,M&EXEEE IXEE,2X EEDGKE 1,EXZEEYE 10

5S1 2,EXXEEE LEEE,,E 2,E~EEAE, 1,EXEEE,E 1,EEXXE,Z IFJ.EEE
DI 31 3,EDI ,EXEE, 1,EEEEAE,E.EKEXE I,,EXEpXq, LEXEEE, IXEEEEE 9
.ENQ 2 12,KXE, IAEAE.ESFENQ,,F I,~E,&EXK 1q,EE,1,EEXEEE 11

-DO 4 21,EEE, ,E~EEF.,2XXEXE,E,,DE,EEXXMO IKE ,EE 12

78

170351 (6 E,, E,3GME 111 121,"1EE lFE, EN3,FEEEEZFJqE, EjE
-Al I16 ,EX3,E,3XEqE, 1,/il ,E.111121,EX E FF, U,, EM E1E, K I ME 17034

7391...

Total aumber of stati. le~aated :73391
Number of states mwalysedl 73391
number of deadhocks: I
sumber of unspecified reception: 0
maximum messge queue size: 6
charnel overflow: NONE

UNEXECUTED TRANSITONS
***NONE*

79

APPENDIX B (Go back N Window Size of 10)

FSM Text File
satrt
memerowf machnes 2
makI.. 17
state
tram. and dat. 1
state 1
tran. way sakD 0trans and data 2
state 2
transaw wayckO 0trans wow ocki I
trans amidsdt. 3
state 3
tram. raw aakO 0tram. rw~ay .l 1
trans wam oak2 2
trans amidst. 4
attot 4
trans rway ako 0
trama waqi ak2 2
trans wavY oak) 3
trans amidsdt. 5
&tat. 5
trans wav acko 0trams wav ask1 1
trams, way oak2 2
trans aw;ay ak) 3
tran, wavý oakd 4
tran, and data 6
state 4
twon, rw-ay ko 0trans rwa saki I
trans wav .ak2 2
trans aw;ay ok) 3
twans a wa oak44
trans way -OaksS
twons and-data 7
state 7
trans rwa sakO 0
trams cway aakl 1
trans way oah2 2
trans a w;ay k) 3
two.. wavy aak4 4
trans way oaakS 5
trans wagy saks 6
twons amnd-dta U
state 8
twos aw-ay ko 0
twan, way oaak2 2
twons rw ayak) 3
twams way oaak4 4
trons aw-aw akS S
trans rwa acks 6
tran, raw oaak7 7
twrand sddst. 9
satet 9
twan, aw-ay kO 0
trans rw ayakl 1L
twan, aw;ay ak2 2
twans revw oak) 3
twon. awow ack4 4
trans rww oask
twon, cway oakS 6
twan, wavy oak? 7
two.. way oaako S
twon, amiddst. 1.0

80

state 10t.raaa zo aehO 0
tresa raw maki 1
trams zwv aehl 2
trams row-act3 3
tea" av-ac,$ 4
trans roy acts S
tressma to aksk 6
traas rva-aek7 7
trans rai-aoke I
trains =97-aok 9
mdAe 2"
state 0
trams raw data 1
&tat* I
trams raw data 2
tram. mudack 0
state 2
trams raw data S
trams mmd a" 0
seate S
trams arw data 4
trams miacak 0
state 4
tram, raw data 5
trams mmd act 0
state 7
tram, ovw data 6
tress am-mak 0
state 6
tram, raw data 7
trasm ani ask 0
tat.e 7

trans CAM data 0
trams su-act 0
state 0
trans raw data 9
tram..ns maok 0
state 9
trams, raw data 20
trams wad act 0
state 10
trans andoak 0
Smitial m~ate a 0
Umiake

Variable Definitions

with MWC 10; use MhW 10;
package difinitiona ia7

lum of machines .constant :- 2;
type a~m transition type in

(and data, rowý_data, tow eckO, raw acki, tow ackL2, * twack3, ~wow&akd,
rew ack5, tow aok6, rav ack7,ra tow echO, ro ck9,04and.k, unused);

type buffer Itype is (dO,dl,d2,dSd4,d5,dE,d7,dO,d9,e);
package bufflenum Lo Is new enumarat ion-io (bufferttYPe) ;
use buff enum io;-
type buffet alrra type is array (1..10) of buffer type;
type seq~axray_ type is array(l. .10) of Integer range -1. .10;

type macbinel-atate type is
record

adata. :buffer attay type :- (dO,dl,d2,43,d4,d5,d6,d7,d8,d9);
ae" integer range 0. .10 0:-0
i :integer range 1.-10 :-1;

end record;

type duwy__type is range l. .255;

type machine2 atate type is
record

Rdata:buffer type :- e;
ezp :integier range 0.-10 :-0;
j :integer range 1. .10 :-1;

end record;
type maahine3_state type is
record

dumy :dxwy_ type;
end record;

type machined state type is
record

dummy :diinmytype;
end record;

type imachines state-type is
record

dummy :dusmy_ type;
end record;

type machineS state type is
record

dummy :dwmmy_ type;
end record;

type machine7 atate type is
record

dummy :dummy type;
end record;

type machines state type ia
record

dummy :dummy-type;
end record;

type global -variable-type is
record

DATA buffer array type :- eeeeeM~ ~ ~ ~)
noQ B*eartay_ type : -l--1--1-,l1-ll)

AM integer range -1. .10 :- -1;
end record;

end definitions;

82

Predclate-action Table

pmecdure Analys re lzdites ~wIae (local aechimal state 'tje;
GZ~aL: global eihnty;
a : atural;

v :In out tato atejea.steack) in

temp :Integer GLOM6.0S&.CK + 2)0 d 1
twqp : istaegs : (06WW..hCK +) mod 11;
tMW3 : Iteger : (GIMAX.ACK4 +4) mad 11;

~ l Iteger : (1OUZO .ACX + 2) mod 11;

te7 :Imtegu (gIOUZOM..hc + 6) mad 11;
tep :Iteger :-(OZO0Uh..= + 7) mood 11;

~e~ : Integer: (GIOU..AOK + 7) mod 11;
te"l0 :Integer :-(61OSU.ACK + 8) and 11;

begin
cme. a to

whose 0 =>
If ((6WZDM. DAM(local. I) - 3) end (W.UML..53Q(loc&l.i) - -1)) them,

Push (wn, aook-data);
end if;

if ((OZDMh..D&ATA(local. i) a 3) and (GLOUL. sag (local. I) - -1)) telm,
push (in, amok-data)

and If;

If ((tow1 - local .aeq) and (0ZAiI1.ACK I- -1)) them
vush (in, rcaechO);

and if;
whe. 2 ->

If ((GweaL..DmEA(loaelIi) - 3) and (OLCOma..83Q (local.i1) -- 1)) Cl~an
push (in, sad-data):

ead it;

If ((tamp - local.seq) and (lOZML.ACK I -1)) them
Push (i, rawý echO);

ead If;
if ((twn2 - local. aeq) and (G1OUIL.ACK I--1)) them

luah (i, rww ecki);
emd If;

whamm 3 ->
If ((OM"z..DaAM(local. I) - 3) and (W.OANZ..SUQ(local.1) -- 1)) thea

lush (in, and-date)
eed if;

if ((tommp - local. sag) sad (61OWULACK I--1)) thee
Push (wn, rvww eckO)

.ind it;
If ((tomm2 - local.soq) and (OWUI..ACK /-1)) them

lush (i, row achi);
a"i if;
If ((t~m3 - local.aeq) and (6LOMaL.fAK I-2-)) them

lush (n, rav ach2);
emd it;

whem, 4 ->
If ((0WZAM.DaA2A(local.i1) w 3) and (GOMLO Sag 3(Iowal. 1) -- 1)) then

tush (w, sulk-data);
emi If;

If ((teml - local.soq) anod (SLCOal.ACK /-1)them
Push (wn, raw echkO)

and if;
If M-6~2 - looalmoe) end W6OS3L.A=3, -1)) than

push (v, cwac&kl);
emd If;

83

If ((tam3 a looal.acoV mnd (wOamaL.A I -1)) thea
inch(v. zw-aokZ);

end It;
If ((tw~j4 - irni . ceq and (01.OLAZ.. -1)) than

lumb (w, xwinch));
eng If;

when, 5 MD
If ((W~AULz.DaAYA(local.1) - 3) and (UWUMNZ. Q(loca. 1.) -- 1)) then

VGch (m, and-data)
end It;

It ((tm~1 - 1.inl.ceq) and (GCOMMACK /- -1)) then
Push (w, a-wow ecO)

end If;
If ((t.e2 - local. ne) end (WLOSZ.. /a -1)) thea

inch (w, rw-ack);
end If;
if ((tdmp a looml.so ae)nd (GLOOL.AC I -1)) thea

rush (w, awack2);
end If;
If ((tmq4 - 1@.e1.ceq) and (WOW.L.AC I -1)) teas

luck (i, we-ak));
end if;

If ((temps m local.aeq) and (WOUAM..A I -1)) thea
luck (w, vwowaakd);

end If;
when 9 W>

if ((GAMI.OmAz.A (local.i1) - R) and (GOWDAL.UZQ(localA) -- 1)) then
rush (w, mnd-data);

end if;

if ((taml - looml.seq) and (GLOUaLACK /-1)) then
Puch (in, rwaackO);

end if;
if ((teW2 - lovel.ceq) and (O I-TAC -1)) then

luck (in. wwaacki);
end It;
if ((tem3 a l~aml.meq) and (WOSAZ.AeK I--1)) then

rush (wn, awowaak2)
end if;
if ((teW4 - looal.oeq) and (GON.OZ.ACK I--1)) then

Wach (w, awow ak3);
end if;

if ((temp - 1.aal.ceq) and (G.OUmAZ.AK/ -1)) then
Push (mn, rwowaok4)

end if;
if ((temp - looml.ceq) and (~OaZAL..W -1)) then

inch (i, awowackS);
end If;

when 7 no
if ((G.OMaL.DA!& (local. I) - 3) and (OW33L. 3Q (local.i1) -2-)) then

inch (n, and date);
end If;

It ((toml - 1.aal.ceq) and (WOaZ40..ACK I--1)) than
inch (in,rawoacko);

end if;
if ((teW2 - local. aeq) and (Q.OUM..ACK /-1)) than

to"h (mn, awowacki)

end if;
if ((taW3 - loaal.ceq) and (OZOa)ML.ACn -1)) then

Puch (in, awo ack2)
end It;
if ((tom4 - local.ceq) and (GLOSAZ..h -1)) than

inch (in, wow aek3)

enad if;

if ((tems - local.aeq) and (G.OMAL~CK I--1)) then
inch (i,awowaak4);

ea" if;
if ((tam4 alocal.aeq) and (@ZUOSAZ.K I-2-)) then

inch (in, awoacks);
end if;
If ((teW7 - 1oca1.aeq) and (COUAL.hCZ / -1)) then

inch (wn, wow sackg)
end If;

when 0 wD

It ((GLOUZ. DWA (local. I) - 3) and (OWSAL. 33(l~oal. 1) -- 1)) thee

84

lan If;ed ae

If Metp1 - lecel.seq) emd (WAMa.Am --) tham
vuah(v,wavechuO):

end If;
it ((teW2 M eluq n W .iaamI-1)te

ft"(W~zwe ckl); ta

It ((tW3 leeel.esq) end (cWdMa.A= .-) then

if Mows4 - 1euel.eeq) end (OdmAL.Am I-M-) them

end if;

it ((tQMS - LOS3.ael Me W end (Cma.A= / -1)) then
luab(v,rowe-ch4);

if ((tav6 - 1.ml.eeq) and IU.0UaL.&A -1)) then
lueh(v,ramvech5);

If ((t~lq - 1.anl..eq) end (OZChL.AC /- -1)) then

end if;

If ((t * 1.inT&lomee) -n (W0) .A an -1)).Q~oaL -2))the
lush (v, and-data);

end it;

if ((wtmaZ..- a(oan.se) an 3)OALC end) thOa.8Q1anlL 1)te
lush(w,uad date);

end If;

if ((teW2 a loani. eq) end (.OLMAZ.ACK I--1)) then
lush (w,raw echO);

end it;
if ((t.o2 - local.seq) end (0LOLma.AC -1)) thent
lueh(w, rawnck2);

end If;
If ((temip - local.seq) end (G.COaZ..ACK /-1)) then
Push (w, vav eak2)

end if;
if ((teS4 - lomal.seq) and (W.OM*Z.AC / -1)) then

uamb (w, rcv ackO)
end If;

if ((t~wV - locel eeq) end (W.ONAL.*CE -) then
rush Iv, raw eakd);

and if;
if ((tmW - local.eeq) end ("C0maZ.AC / -1)) then
lush v, raw eacS);

end if;
If ((teM7 - local.seq) end (.OMnX.A~lK I.-1)) then
lush (w, raw nack7),

end if;
if ((top - 1m1a.seq) and (OUGiAL.ACK -1)) then
Push Iwv, awý nac?)

and It;
it ((tm~9 a loael..e) end (W.Cin&.ACK / 1)then
lash (w.raw oackt)

end it;

when 10 a>

if ((tm~l - 1oml..eq) *ad (GI.ONaL.WC /a -1)) then
lash I~v, aq echo);

end it;
it ((tmW2 - loeml.seq) end (GLO /UC -1)) then
lush v, raw ecki);

end If;
if ((tano - looal..eq) end (W.CMULAC I -1)) then
lush (w, raw eack2)

end .if;
if (ftmo4 -leael.seq) end (G.SL.NALA/-1) then
Push (w, rayeatl)

end Li;
if ((tmWS loaml.eq) end (W.COaZ.ACK= -1)) then

85

rush (W,zuraoha4);
.ini If;
If ((te~g - local.aeq) and (GLUM"A..MK -2)) then

Puah (W, raw Oaks)
eOW If;
If ((tm*7 a loeml.mo &as d (GffUM..&C I -1)) them

end If;
If ((tep - locml.seeq and (inLa.AM /m -2)) thean

Pnab (in,vrc-&c7);
end If;
if ((teW9 - loemi. eq mand (GLCOaL.AC -1)) than

Puab (i, rav m.atS)
.. d If;
If ((taml0 a looel...q) ea" (W4OS&L.ACK I-1)) them

Psha (wn, rev matg)
a"d If;

wham others -
mull;

end mas;
ond nmalymeledicatea-batinol;

separate (main)
pz haum enlymelPzdiemtoa Vftinea (local machine2 satetetype;

mZ*ML: global _v&aebl. t3We;
a: natural;
w :in out tzaaimtin ~xatckjpachage. saeck) is

begin
caen a i@

if ((GZAML.DS2&(loeal. j) I-) and (OMmlL. 3Q (local. J) - local.ex)) them
Such (in, revdate);

end If;
when 11213141519171819 am

if (OLOUIZ..D&AZ(2ol~e.j)-3) then
Puaab(i, mand ich);
end If;
if ((WL40M".DAZA(loeal. j)/=) end (GLCSAL.S308(local. J) -local.am)) them

Push (in, raw-data)
end if;

when 10 ->
if (OZ&LZ..WMf (local. j)-S) then
Psha (in, andL_ac);
end if;

whent othere
null;

end cmae;
end Amalyne iredictes _fchine2;

aeeat (main)
poeu.Analyse _Predicate. Uchine) (local : mmichina3 etate type;

QWUU.: global - asAablo type;
a :natural;
in : In out trensitiomastack~package.astack) ia

begin
mull;

end Analysoe Pedicate. Nachia*3;

separate (main)
pzocedure AnalyzejPredicateo nachin*4 (local :machined atato type;

WUAML: global ,ar-aele type;
a :natural;
w : in out transition satckWeckage.satck) is

begin
null;

end Analyze Predicate. Nchift*4;

procedure Analyse Predicatea MchiueS (local : machimaS state type;
mZOM: global varileblolype:
a natural;
wn In out tranaitioma atekVackage.statck) is

begin
mull;

end Aaalyueý_rwdicatoeeMchineS;

86

Procedure AlysPdite ahnE(Iowal: machiasE state, type;
.OSUI.: g10MI alamblaeypI

a :natural;
v :In out tramaaitiseatac~pma~kage.stack) Is

begin

and Ammlysmelredicatom Nmokinei

separate OMain)
Procedure Amalysme Predicates 3ftbi.7 (local - mmcbin7 state type;

GWhL: global yuaaibI.. type;
a :natural;
- :In out

transition -stack-iackage. stack) Is

begin

end AnalysePredicates Mmehime7;

separate Omai)
Procedure Analyg. redicatomNchime (local :machineS stat. type:

GZAMOSL: global variable type:
a natural;
v in out tvansition atack~jeocage stack) Is

begin
null;

endAalePrdctscie8

*Oeprate (main)
Procedure Action (in _systemL state in out Gattatereord .type;

In transition in out am transition type;
out smystem atata in out Goiatate ecord type) is

begin
case (in transition) Is

when !"d-data ->

out syte sat. 0SL VaAi*M.35.DAVA (in systam state machinel. stato..i)
in sytem tate mchine! state. Sdata (in srystem itstatemachimal state. i);
ovt sOystemm stato.Ga fl~A aiXAAZ38.m30(i systow stato~e mcisel state. i):

out system -State~machimel -state.i :- (in system state~machlIne state.i sod 10) 4 1:
out system smtate mach'inel state. seq :- (T(in sGystem-state aacbinel state. *eat + l)mod 11);

wben raw mchO I row~ackl I raw _aok2 I raw ack3 I raw ack4
I row ackS Ircwackg I row aock7 Iva; acklirow _cotS

outsytemstte GWhLVAaIAsiS .ACK -1;

when and act ->

out system -state .@OSAL YS SSIS.A=E - insystemastate .machine2 state. sp
Out system state .maachn*e2tate. Idata -;

when raw-data a)

out sDystem state .macbine2 state. .A~ta-
in system state.GLOBS*Z._ARTANT8 .DA2A(in system state. mea*hn2 state. j);

out sYstematata .WZ&ML VNADISASS. DAI (Lin systam state .machine2 state .1) :a a;
out sstemtata.G1~IL YIIA sag.5 (in systemi state .M&chnA17State. 1) :- -1;

out systea-state.machins2 state.j :- (in ystem state.macbiael stato.j mod 10) + 1;
-out system state .nachins27stateup: (((in systeam_stato.m-bhiaeftata.eap) + used u1);

when others ->
putlIne(fleore, Is an error in the Action procedure");

a"d csee;
end Action;

87

Output Format

separate (main)
procedure output Otuple (tuple in out Gstate record type) is
begin

if print header then
new line(2);
set @01(7);

puft line(- ml(seq,i,Sdata), m2(exp, J,Rdata), *DTQC)

print_header :- false;
also

put (" &" a nteger * iage(tuple machine state (1)))
put(
put (tuple mtachinel state.aseq. width -> 1);
put(V , "
put (tuple machinel state. , width -> 1);
put(,")

huff etwasLo -put (tuple -maehinel-state.3Idata (1) , set -)upper~case);
put (" *"a integer' image(tuple machine state (2)))
put(" ")
put (tuple .macbin*2 state .exp. width -> 1);
put" , 1);
put (tuple .machine2 state. j, width -> 1);
put(" ,)
buff enumio .put (tuple .machine2 state .Rdata. set -> upper~case);
for 1. in 1. .10 loop

put(" ,)
buffeanusmio .put (tuple. GLOBAL VARIiBIZS . DATA (i) ,set ->upperýcase);
put (7, ")
put(tuple.GLORAL-V3RIAuLZ8.sQ(i) ,width->l);

end loop;
put(" '");
put (tuple .GLWSAL VARZifLZS .ACK, width -> 1);
put(" 1";

end if;

end outputQtupl*;

88

Program Output (System State Analysis)
hhICRUHI5IZ! IAMYSZI of :gbnl0 .80.

"SlCNFICATZON
I Machine 1 State Transitions I

I Fra. I To I Transition I

1 0 1 1 1 and data I
I 1I 0 1 ravacokO I
I 1 1 2 1 and data I

1 2 1 0 1 ravuackO I
1 2 1 1 1 ravraokl I
1 2 1 3 1 and-data I
1 3 1 0 1 row~ackO I
1 3 1 1 1 rav-acki I
1 3 1 2 1 raw*ack2 I
1 3 1 4 1 and data I
1 4 1 0 1 rav7 ackO I
1 4 I 1 1 row 7ackl I
1 4 I 2 1 raow ack2 I
1 4 1 3 1 rev;'ack3 I
1 4 1 5 1 and-data I
1 5 1 0 1 rcivackO I
1 5 1 1 1 rcivackl I
1 5 1 2 1 rcivack2 I
1 5 1 3 1 row7ack3 I
1 5 1 4 1 rcv~aak4 I
1 5 1 6 1 and data I

I 1 0 1 rav~aok0 I
I 6 I 1 1 rciw-ackl I
I 6 I 2 1 raw ack2 I
I 6 1 3 1 row ack3 I
G 1 4 1 rav7aak4 I

I 6 1 5 1 row -ack5 I
I 6 1 7 1 and data I

1 7 1 0 1 raow cakO I
1 7 1 1 1 row acki I
1 7 1 2 1 rev ack2 I
1 7 1 3 I rav7 aok3 I
1 7 1 4 1 row;aok4
1 7 1 5 1 row ~ack5

I 7 I 6 1 roav7ak6 I
I 7 I 1 and-data I
a 0 1 rev7ackO I

8 2 1 rawaoak2
I 9 3 1 rev7aok3
a 1 4 1 rcv7ack4 I
a 1 5 Irc4vack5

8 7 Iroai'ak7
8 9 Iand data

I 9 I 0 Irow'ack0
I 9 I 1 Irciw'ackl I
I 9 1 2 Irow7ack2 I

9 1 3 Irow~aok3
I 9 1 4 Irev7aok4
I 9 1 5 Irow ack5
I 9 1 6 Irow -ack6
I 9 1 7 1 raw ack7 I
I 9 1 S 1 row 'ackS
I 9 1 10 1 snd-data
I 10 I 0 I row'ack0
I 10 1 1 1 row a&cki
I 10 1 2 1 rev7ack2 I
I 10 I 3 1 rciwack3 I

1 10 1 4 1 row ack4 I
1 10 I 5 I rcv~aok5 I
1 10 1 6 1 row -aok6 I
1 10 1 7 I row7aok7
1 10 1 8 rcvwackl
I 10 I 9 Irow i'ack9

89

I Usablue 2 State Transition I

I From I To I TransLtion I

0 1 I raw data
1 2 ra•- data
1 0 and aak
2 3 rai data
2 0 and-aok
3 4 rai datas
3 0 sandack
4 5 I oraw--data
4 0 and-ack
5 6 Irv--data
5 0 and--aak
6 7 Irav7data
6 0 and ack
7 8 row data
7 0 ndack--
a 9 ro.-data
a 0 and-ack
9 10 rawydata
9 1 0 1 and ack
10 1 0 1 and ack

RZACUABILITY RAmP.
0 0 0 0 and data 1
1 , 0]0 and-data 2

ray data 3
2 2, 00 and-data 4

raw--data 5
3 1, 1 0 and-data S

and-ack 6
4 3, 0 0 and-data 7

raw--data 8
5 2, 1 0 and-data a

ray data 9
6 1, 0 1 rav-ackO 0

and-data 10
7 4, 0 0 and-data 11

rav-data 12
6 3, 1 0 saddata 12

raw-data 13
9 2, 2 0 and-data 13

and-ack 14
10 2, 0 1 ra--aakl 1

and-data 15
raw-data 16

11 5, 0 0 and-data 17
rav--data 18

12 4, 1 0 and-data 18
rawy-data 19

13 3, 2 0 anddata 19
rcawdata 20

14 2, 0 2 rav-ackO 0
and-data 21

15 3, 0 1 rav--aak2 2
and-data 22
rawvdata 23

16 2, 1 1 rav-ackl 3
and-data 23
and-aak 14

17 6, 0 0 and-data 24
ravwdata 25

18(5, 1 0 snd-data 25
raw -data 26

19 4, 2 0 and-data 26
rav--data 27

90

20 3, 3 3 0 aad data 27
snd ack 26

21 3, 0 3 2 rov--aokl 1
and-data 29

rai --data 30
22 4, 0) 1 rov--ack3 4

sanddata 31
rawv-data 32

23 3, 2 1 rv-aak2 5
and-data 32
ray data 33

24 7, 0 0 and-data 34
ra--data 35

25 6, 1 0 cad-data 35
rav data 36

26 5, 2 anddata 36
rav-data 37

27 4, 3 0 and-data 37
rav--data 38

28 3, 0 3 rov--ackO 0
and-data 39

29 4, 0 2 rcnvýaak2 2
and-data 40
rev--data 41

30(3, 1 2 rev ackl 3
and-data 41
sndack 28

31 (5, 0 1 rev-ak4 7
and-data 42
revy-data 43

32 (4, 1] 1 rav--ack3 6
and-data 43
rowv-data 44

33(3,23 1 ravrack2 9
and da ta 44
and-ack 28

34 8, 0 1 &nddata 45
rawv-data 46

35 7, 1 0 and-data 46
ray--data 47

36 6, 2 0 and-data 47
revdata 48

37 5, 3 0 and-data 48
raov-data 49

38 4, 4 0 o nddata 49
and-ack 50

39 4, 0 3 rev-ackl 1
snd-data 51
rawv-data 52

40 5, 0 2 rev-ak3 4
and•data 53
rav-data 54

41 4, 1 2 revaak2 5
and-data 54
ro--data 55

42 (6, 0 1 rav--aok5 11
and-data 56
raw data 57

43 5, 1 1 rev-aok4 12
and-data 57
rav-data 56

44 4, 2 1 rev-ack3 13
and-data 58
rai data 59

45 9, 0 2 and-data 60
ro--data 61

46 8, 1 0 and-data 61
row-data 62

47 7, 2 0 and-data 62
ray-data 63

46 6, 3 0 and-data 63
rai data 64

49 5, 4 0 and-data 64

91

raw data 65
50(4.,014 gavsackO 0

and data 66
51(5, 013 rav~aak2 2

auddatta 67
raw dta so

52(4, 1 3 gav~acki 3
&od-data so
and aak 50

53(6, 012 ravaakd4 7
soc dta "A
gay data 70

5415, 112 ravraak3 8
..P at& 70

awdata 71
55(4, 2 2 rav:aak2 9

and-data 71
sad ack 50

56(7, 0 1 gavackE 17
end data 72
ray data 73

57(6, 111 gaiackS 18
end data 73
gay -data 74

58 5, 211 gav~aak4 19
and data 74
gav7data 75

59(4, 311 gav7aak3 20
sod dta 75
andak 5

60 110, 0 13 awdta 76
61(9, 111 *nddAata 76

ga,_data 77
62(8, 2 0 eaddata 77

gav data 78
63(7, 310 anddata 78

gay -data 79
64 6, 410 **ddata 79

rcY~data so
65(5, 5 0 eaddata 80

and ack 81
66(5,0] 4 raiwackl 1

and data 82
gay data 83

67(6, 013 rev ack3 4
BndCdta 84
zaw data 85

68(5, 113 gav7aak2 5
aad data 85
gcv data 86

69(7, 0 2 rai-acks 11
and data 87
gay data 88

70(6, 112 gaivaak4 12

:and-data 88
raw data 899

71(5, 2 2 rav~ack) 13
snd-data 89
rav data 90

72(8, 012 rgavaak7 24
and data 91
gay data 92

73(7, 111 revreack 25
and data 92
raw "data 93

74(16, 2 1 rav;ackS 26
andCdta 93
raw data 94

75(15, 3 1 rav~aak4 27
soc dta 94
rav data 95

76 (10, 1 12 raw data 96
77 (9, 210 anddata 96

92

rav data 97
78616, 3 10 and-data 97

rav data 96
79 7, 4)0 and-data 96

raw data 99
6o(6, 510 and-data 99

raw data 100
61(5, 015 ravrackO 0

and-data 101L
82(6, 014 rav~aak2 2

and -data 102
rav data 103

83(5, 1)4 raw7aakl 3
and-data 103
and-ack 61.

64(7, 0 3 rev aak4 7
and-data 104
raivdata 105

85(6, 1)3 rev aok3 aand data 105
raii data 106

8665, 2 13 revrack2 9
and-data 106
and ack 61

87(8, 0 3 raw;ack6 1.7
and data 107
rev;-data 106

88(7, 1)2 rev ack5 16
and data 106
raiY data 109

89(6, 2)2 rev aak4 19
and-data 109
ray data 110

90(5, 3)2 ravrack3 20
and-data 110
and-aak 61

91(9, 0)3 ravraakl 34
*nCddata 111
rai data 112

92(6, 1)1 rav aak7 35
and data 112
rev -data 113

93(7,.211 revacak6 36
anddata 113
rav data 114

94(6, 3311 raiiack5 37
and data 114
rev data 115

95(5, 4)1 rav~ack4 36
and-data 115
and-ack 61

96 (10, 2)1 raw data 116
97(19, 3)0 and-data 116

rev data 117
96(6 , 4)0 and-datal117

raw ,data 116
99(7, 5)0 and-datal11l

raii data 119
100(6, 6)10 :nd-datal119

andack 120
101 (6, 0)35 ravaeckl 1

and data 121
rai data 122

102 -7, 0)4 rev aak3 4
and -data 123
rev data 124

103(6, 1 4 rav aek2 5
and-data 124
raw data 125

104(6, 0)4 rav;aak5 11
and data 126
raii data 127

105 7,12)3 raiaak4 122

93

wAnd.ta 127
raw data 128

106(6.,2 3 raveack) 13
and-data 128
raw data 129

107 9, 034 rav~aak7 24
anCd dt~a 13301
a data 3

108 (8, 132 ravwack6 25
and data 131
raw data 132

109 7, 2 2 ravrackS 26
and dta 132
raw data 133

110(6, 312 ravrack4 27

"an~dta 133
vaw data 134

Ill 110, 0 34 raw :ackt 45
raw data 135

112(9, 1 2 rcaw'ackl 46
anCd dt~a 11356
&aw data3

113(8, 211 rav~aak7 47
and data 136
rav7data 137

114(7, 311 raw7ackS 48
and dta 137
raw -data 138

115 E(6, 431 rav-ackS 49
and data 133
raw data 139

116 (10. 3 10 raw data 140
117(9, 410 snddatal140

raw data 141
11e18, 530 anddatal141

raw data 1L42
119(7, 630 saCdtal142

raw -data 1.43
22016, 036 rawackO 0

and data 144
121(7, 015 rawack2 2

and data 145
raw data 146

122(16.,1 15 raw~ackI 3
and data 146
and ack 120

123(8.,035 raiPaak4 7
and data 147
raw -data 148

124 (7, 114 raw~aak3 8
and data 148
raw data 149

125(6, 234 eavwak2 9
and dta 149
and ack 120

126(9, 015 raw'-aak6 17
and data 150
rawda"ta 151

127(8, 113 ra4wackS 18
and dta 151
rovw data 152

128(7, 23 3 rawaaak4 19
anddata 152

ra aa153
129(6, 313 raw~ack3 20

sanddta 153
and ack 120

130 (10, 0 15 raw aack8 34
rawda"ta 154

1312 9, 1 3 rai-w a 35
anC dta 154
raw data 155

132(8, 232 reawaaak6 36

94

and data 155
raw data 156

133 (7, 3)2 rcva-CkS 37
and-data 156
raw~data 157

234(6, 4)2 rev;ao&k4 36
eanddata 157
and ack 120

135(110, 1 13 rcvaw kg 61
raw ~data 156

136(9, 2 1 rav:'aakl 62
and-data 15$
Cra7 data 159

137 (6, 3)1 rav~aak7 63
manddata 159
r*9w data 160

138(7, 4)1 raw~ackS 64
sandata 160
raw data 161

139 (6, 5)1 rCawacks G5
and-data 161
and-ack 120

140 (10, 4 10 raw "data 162
141(9, 5)0 and-data 162

raw 'data 163
142 6, 6)0 and-datal163

raw -data 164
143 7, 7)0 and-datal164

and ack 165
144(7, 0)6 rav-acki 1

and data 166
rew data 167

145(6, 0)6 rav~aak3 4
4nd data 166
revw'data 169

146(7, 115 rciiaak2 5
and-data 169
raw -data 170

147(9, 0)6 rev7ack5 11
and -data 171
raw -data 172

146(6, 1 4 raiwack4 12
and-data 172
ravw data 173

149(7,.2)4 rovwaak3 13
and-data 173
row data 174

150 (10, 016 row 7ack7 24
row data 175

151 9, 1)4 rv7awak6 25
and-data 175
raw data 176

152(8, 2)3 raw~ack. 26
and ~data 176
raw data 177

153 (7, 3 13 raw aack4 27
and-data 177
raw data 176

154(110, 1)4 rawa-ckl 46
rov7 data 179

155(9, 2)2 rawaak7 47
snd data 179
raw data 160

156(8, 3 2 rawaack6 46
and-data 160
row 'data 161

157 (7, 4)2 raw;ackS 49
andf-data 161
rev, data 162

156(110, 2)2 rawaack9 77
raw dAata 163

159 (9, 3)1 raw;ack# 76
and dlata 163

95

raw data 184
160 (8, 411 roa;ack7 79

sanddata 184
reir data 185

161(7, 511 mrowackg s0
snd data 185
raw data 186

162 (120, 5)1 0 row data 187
163(9, 6 0 snddata 187

row -data 188
164(8, 710 snddata 186

rav data 189
16517, 0 7 rev;'ackO 0

and ata 190
166 (8,017 rwc 22

and-data 191
raw data 192

167(7, 1 6 roavackl 3
anddata 192
andack 165

168(9, 017 raw~aok4 7

anzatca 193
rwdta 194

169(8, 115 rc7awaak3 8

and data 194
raw data 195

170(7, 215 rav;aak2 9

antd-data 195
and ack 165

171 (10, 0 1 7 reow ack6 17
ravw data 196

172(9,1] 5 ravrackS 18

and data 196
raw 'data 197

173(8, 214 ravwaak4 19

and data 197
raw -data 198

174(7, 3 4 row~aok3 20
and data 198

and ack 165
175 (10, 1 15 rawaock7 35

rav'data 199
176 (9, 213 rwavoak6 36

and data 199
raw'data 200

177(8, 313 rawaaak5 37
Banddata 200
raw data 201

178(7, 413 rawraak4 30
anddata 201
and ack 1L65

179 (10, 2 1 3 raw -ack* 62
raw -data 202

180(9, 312 raw;aok7 63
anddt20
rawdata 203

nd data 203

raw -data 204
182 17,5 2. rawaaak5 65

and data 204
and ack 165

183 (10, 3 11 raw aok9 97
raw data 205

184 (9, 411 raw;ackg 98
and data 205
raw 'data 206

185(8, 511 rwaVack7 99
and data 206
ravw data 207

116(7, 611 roavackS100
and data 207
and aak 1L65

96

137(110, 61 0 rev data 208
188(19, 7j0 mod-data 208

rav7 data 209
189 18, 610 snddata 209

andeack 210
190(6, 01a rav'ackiL 1

snd data 211
rev, data 212

191(9, 01a rwivak3 4
and-data 213
rev, data 214

192(3 , 116 raw;aokL2 5
sA47~data 214
rai data, 215

193 (10, 018 raowackS 11
raw~data 216

194(9, 116 zav7aok4 12
eanddata 216
raw~data 217

195 (3, 215 rav7&ck3 13
and-data 217
ravw data 218

196 110, 1 6 rav7ackS 25
row data 219

197(9, 234 raw~ackS 26
snd data 219
row data 220

198(8, 314 raiwaok4 27
and-data 220
row -data 221

199(110, 214 raivaok 47
rovw data 222

200(9, 313 raivackS 48
andf-data 222
rav7*data 223

201(6, 413 ravýacAk5 49
and data 223
row data 224

202 [10, 3312 rov~ackS 78
raw -data 225

203(9, 412 rawaoak7 79
and-data 225
ravw-data 226

204 (8, 512 raw;-ackG 60
andf-data 226
raw~data 227

205 110, 4 1 1 rav~aak9 117
row -data 223

206(19, 511 rovwaokG 18
and-data 228
raw -data 229

207(16, 6 1 rcvwaakr ll
and data 229
row data 230

208(110, 710 row~data 231
209(9,3830 and'data 231

row -data 232
210 8, 0 9 rav7ackO 0

end-data 233
211 9, 0 9 revw'aak2 2

212(8, 117 rov7aakl 3

213 (10, 0 9 roav7ck4 7

214 1(9, 117 rav~aak3 8

215 (8, 216 raVwaok2 9
snd data 237
and ack 210

97

216 (10, 1 3 7 raw aak5 16
rev;,data 238

217(9,S.2 15 ravraft4 19
:n~d:d~ata 238rydta 239

216(16, 3135 rnaiak3 20
and-data 239
and ack 210

219 (10, 2 13 5 raaowakg 36
rav data 240

220 [9, 334 rrawackS 37
and-data 240
rev,'data 241

221(6, 4 4 raw;aak4 36
sandata 241
and ack 210

222 (10, 3 1 3 raw aak7 63
ravrdata 242

223(9, 4313 raw~aak6 64

an~data 242
radta 243

224(6,531 3 raw~aak5 65
sandata 243
anaCak 210

225 [10, 4 3 2 ravwackl 93
rov data 244

226 (9, 5 12 rovýaWk 99

and data 244
row -data 245

227(6 ,63 12 raowackS 200
and data 245
Gandaak 210

228 110, 5 1 1 rav, ack9 141
raw dAata 246

229(9, 631 ravack8 142

=nd data 246
rwdta 247

230(6, 711 ro;awak7l143
an rbdata 247
andack 210

231 (10, 1 1 0 rav; data 246
232(19, 9310 anddata 248

and ack 249
233 1 9, 0 310 rov, aakI 1

and-data 250
ravwdata 251

234 110, 0 110 ravr ack3 4
rovw data 252

235(19, 138 reawaak2 5
and data 252
raw data 253

236 --0, 113 rov~aak4 17
row data 254

237 E9, 2316 rov aak3 13
and-data 254
row data 255

236(110, 2 16 raw;ack5 26
ravw data 256

239(19,331 5 revwaak4 27
and data 256
raw -data 257

240 (10, 3 34 raw ackG 46
raw data 256

241 (9, 434 cvwackS 49
and data 258
row *data 259

242 (10, 4 3 3 rovw aok7 79
row data 260

243(19, 5 13 roavak6 60
and-data 260
rav data 261

244 (10, 5 3 2 rev aak6 116
raw data 262

98

245 (9, 632 re aak7 119
and-data 262
ray -data 263

246 (10, 631 rav7aak9 163
rav data 2644

247 (9, 731 ravaak~l 14
and-data 264
ray data 265

248 (10, 9310 ray~data 266
249 1 9, 0 111 rav7 ackO 0

eanddata 267
250 [10, 0 311 raY -aak2 2

ray data 263
251 1 9, 1 3 9 ray eacki 3

and-data 268
and ack 249

252 (10, 131 9 rav~ack3 I
rav data 269

253(19, 2317 rav~aak2 9
anddata 261
and aak 249

254(110, 2317 rav7aak4 1.9
rev;'data 270

255(19, 336 ravraok3 20
and dsta 270
and ack 249

256 (10, 335 raviackS 37
rai data 271

257 1 9, 4 35 raw aack4 38
and data 271
and ack 249

258 (10, 434 revrack6 64
raw -data 272

259(19, 5 4 rav~ackS 65
and data 272
and aak 249

260 (10, 533 rav~aak7 99
rav7data 273

261(19, 633 revaak6 100
and data 273
and ack 249

262 (10, 632 rav;ackS 142
ray 'data 274

263(19, 732 rv~aak7l143
and-data 274
and-ack 249

264 (10, 731 raw7ack9 188
ray -data 275

265(19,8] 1 raivackS 189
end-data 275
and ack 249

266 (10,10 30 and ack 276
267 (10, 0 312 rai acki 1

rav7 data 277
268 (10, 1 310 rav -ack2 5

rav data 278
269 (10, 2318 rav~aak3 13

ray -date 279
270(110, 3316 raiwaak4 27

raw -data 280
271(110, 4315 raw-ackS 49

raw -data 282
272 (10, 5314 rav7aak6 800

ravy data 282
273 (10, 6313 ray aak7 119

ray -data 283
274 (10, 732 raev-akl 164

ray, data 284
275 (10, 831 rcvwaak9 209

raw -data 285
276 (120, 0 113 raw ackO 0
277 (10, 1 I11 raw 'acki 3

and ack 276

276 (10, 2 3 9 rev aak2 9and-ack 279
279 (10, 3]7 ara-ak3 20

and--ak 276
260 [10, 4 6 w•v-ck4 36

and-ack 276
26'- t.0, 5 3 5 rawaokS 65

and_-ak 276
.A2 (10, 6 3 4 row aak6 100

and-ack 276
263 (10, 733 rc--aak7 143

and-ack 276
264 110, 63 2 r--aokl 189

and-ack. 276
265 (10, 9] 1 rcw-aak 232

and-ack 276

SWmAMhy OW RACBMZL!YY ANILYSIS (AUJLZYSXS COrWLU!3D)

Number of atates generated :286
Number of states analyzed :286
Nimber of deadlocks : 0

UN2CUTED 2ANSIUONS

100

APPENDIX C (Token Bus Protocol)

FSM Text File

start
number of machines I
macb-in 1
state 0
trans ravl 1
trans 9t tkl 2
state 1
trans readyl 0
state 2
trans Xmitl 3
trans pasal 0
state 3
trans moreD1 2
trans pass tkl 0
machine 2
state 0
trans rav2 1
trans get tk2 2
state 1
trans ready2 0
state 2
trans Xmit2 3
trans paas2 0
state 3
trans HoreD2 2
trans pa.. tk2 0
machine 3
state 0
trpas rav3 1
trans get tk3 2
state 1
trans ready3 0
state 2
trans Ximt3 3
trans pass3 0
state 3
trans moreD3 2
trans pass.tk3 0
machine 4
state 0
trans rcv4 1
trans get tk4 2
state 1
trans ready4 0
state 2
trans Xmlt4 3
trans pass4 0
state 3
trans moreD4 2
trans passtk4 0
machin. S
state 0
trans r•vS 1
trans get tkS 2
state 1
trans readyS 0
state 2
trans XZitS 3
trans pass5 0
state 3

101

trans woreD5 2
trans pass tkS 0
machine £
state 0
trans raov 1
trans got.tk6 2
state 1
trans readys 0
state 2
trans mit6 3
trans passE 0
state 3
trans soreDS 2
trans pass tkg 0
machine 7
state 0
trans rcv7 1
trans got tk7 2
state 1
trans ready7 0
state 2
trans Xait7 3
trans pass7 0
state 3
trans moreD7 2
trans pass tk7 0
machine 8
state 0
trans rcav 1
trans get_tk8 2
state 1
trans readyS 0
state 2
trans XMLt8 3
trans pass$ 0
state 3
trans moreDS 2
trans pass tkB 0
in:ýlal stato 0 0 0 0 0 0 0 0
finish

102

Variable Definitions (No Message in outbaf Variables)

with YIN 10; use. YEN!_10;
package 49finit ena La

nus of machinesa constant :- 8;
k :conatant := 7; -- rnumer of rove (masmages) In output buffer
type sone transit ion-type Is (peed. pasa2, paneS, paaa4, paneS, peasG,

pmaa7, paneS, get -tkI, get Wh,
get_ tk3, get tk4, get tk5, get .tkg,
geit k,Xget ,2mthU. it7, laiti, roit3,

.oreD2, moreD3, moreD4 * areDS,
moreD6, oreD7,foreD4, pane tk4, psanstk5,
paae.tkS, panamtk7, paae~tT
pass tkl, pace tk2,paaatkW,
ravr, rcv4, ro!, rovG,rcv;7,._ayS
rcv2 , rcv3, readyl, ready2. roady3.
ready4, readyS, zeady6. ready7, ready$, unused);

type dumy. type Is range 1. .255;
type t field type is (D,Y,2);
package t field anum io La new enumeration 10 (tfildtype);
use tfedeu c

type WIDUNY1MR is
record

t t field type;
DI Tnto~eger range 1. . 8;
Sk integer range 1. .8;
data :character;

end record;

type input buffier-type is
record

DA integer range 0. .8 :-0;
SA integer range 0. .8 :-0;
data :character :- '3';

end record;

type outputbuffer type Is array (1. .k) of MBDXWI !1PX;

type machinel atato type La
record

next :integer :- 2; -- address of downstream neighbor
I: integer :- 1; -- stations own address
ctr :integer range 1. .(k+l) :-1; -- counter for messages sent

j:integer range 1. .k :- 1; -- index for output buffer
inbuf input buffer type; s- tores the received manages
outbutf output buffier typ -(32,,'',(3311)

end record;

type machine2 atate type La
record

next :integer :- 3; -- address of downstream neighbor
I: integer :- 2; -- stations own address
ctr :integer rang. 1.. (k+l) :- 1; -- counter for messages sent
j :integer range 1. .k :- 1; -- index for output buffer
inbuf inputjbuffer type; s- tores the received messages
outbuf output bffer type : ((2,1,2, '11),1(3,3,2, 11'),

end record;

type machine3_atate type La
record

next :integer :- 4; -- address of downstream neighbor
I :integer :- 3; -- sattions own address
ctr :integer range 1.. (k+l) :- 1; -- counter for mescages sent

103

j Integer range 1..k :- 1; -- index for output buffer
Inbuf input buffer type; -- stores the received messages
outbuf outpUtbuffettyp -,

(i3,4,3.,'!'). (3,5.3, '!').

end record;

type machine4 state type i•
record
next : integer :- 5; -- address of downstream neighbor
I : integer := 4; -- stations own addtess
ott : integer range 1.. (k+l) :- 1; -- counter for messages sent
j : Integer range 1..k :- 1; -- index for output buffer
inhuf input buffer type; -- stores the received massages
outbuf output buffer type :- .Z ,5.4.'1'),

end record;

type machineSstate type Is
record

net : integer :- 6; -- address of downstream neighbor
I : Integer :a 5; -- stations own address
ctr : integer range 1.. (k+l) :- 1; -- counter for massages sent
j : integer range 1..k :- 1; -- index for output buffer
inbuf input buffer typ; -- stores the received messages
outbuf output buffer type :1.), (Z.2,5.'11).(1.3,5.'1').(Z,4.5.'Za).

end record;

type macbine6 state type is
record
next : integer :- 7; -- address of downstream neighbor
I :integer :- 6; -- stations own address
ctr : integer range 1.. (k+l) :- 1; -- counter for messages sent
j : integer range 1..k :- 1; -- Index for output buffer
inbuf input buffer type; -- stores the received messages
outbuf output buffer type :-(,2,6. (1,), (2,4,6,'V),

end record;

type maebineT7statettype Is
record

next : integer :- 8; -- address of downstream neighbor
I : integer :- 7; -- stations own address
ctr : integer range 1.. (k+l) :- 1; -- counter for message* sent
j : integer range 1..k :- 1; -- index for output buffer
inbuf input buffor type; -- stores the received messages
outbuf output buffertype :-((9,2,7,'1'),(R,2,7,111),(9,3,7, '11), (I,4,7,'1'),

end record;

type machineS state type is
record
next : integer :- 1; -- address of downstream neighbor
i : integer :- 6; -- stations own address
Otr : integer range 1.. (k+l) : 1; -- counter for messages sent
j : integer range 1..k :- 1; -- index for output buffer
inbuf input buffer type; -- stores the received messages
outbuf output buffer type :- 111), (1,2,8,'Z'), (3,4.4,'Z1),

end record;

type global variable type is
record

ZDIUM : =UDION TYP :-n(T,1.2,'U');
end record;

end definitions;

104

Variable Definitions(One Message in outbiuf Variables)

with IUzT 10; use Tan! 10;
package dfinit ions isa

nu,ýOf machines :montant :- 8;
k : outant. :- 7; -- number of rows (macsages) in output buffer
type &cm-transition type is (passi. pass2, paes3, pass 4 peassS.passf,

pass7, pass6, get tkl. get tX2,
get tk3, get tk4, get t~k5. get tkg,
get tk7, get tkS, Imitl, Imit2, lait3,

moreD2 ,moreb3, moreD4,= reDS,
mozeDG, moreD7, morefS, pass tk4,*paas tk5,
passutkE.pass tk7,pasastic!,
passutkl. pass tk2,pass tW,)
ravi, rcv,4.row,1JrovE, rov7,z roI
rcv2 , jrcv3,readYl. ready2, * rdy3,
ready4, readyS, ready6, ready7, readyf, unused);

type dusmy type is range 1. .255;
type t f ield type Is (D,2, Z) ;
package t fieldeonum o is new enumerat ion 10 (t~field-type);
use t-fielldenumnio;_

type DUDIUM TYPl is
record

t t field~type;
DA integer range 1.A.;
8k integer range 1. .8;
data :character;

end record;

type input buffer-type is
record
DA integer range 0. .8 :-O;
81 Integer range 0. .8 :-0;
data :character :- 'K';

end record;

type output buffer type is array (1..ki) of MDZUN TYPE;

type machinel-state type is
record
next :integer :- 2; -- address of downstream neighbor
i: integer :- 1; -- stations own address
ctr :integer range 1.. (k+l) :-1; -- counter for massages sent

j:integer range 1. .k :- 1; -- index for output buffer
inbuf input buffer type; -- stores the received massages
outbuf output_buffer_type -(D21 I',(,..!)

end record;

type machine2 state-type is
record

next :integer :- 3; -- address of downstream neighbor
i: integer :-.2; -- stations own address
ctr :Integer range 1.. (k+l) :- 1; -- counter for massages sent

j:Integer range 1. .k :- 1; -- index for output buffer
inbuf input buffer type; -- stores the received massages
outbuf output buffer-typ : (,,,1)(,,,1)

end record;

type machine3 state type is
record

next :integer :- 4; -- address of downstream neighbor
I: integer :- 3; -- stations own address
ctr :integer range 1.. (ic*) -- 1; -- counter for messages sent

105

I:nteger range 2..k :- 1; 0- LidOx for output buffer
inbuf input buffer_type; s- stores the received massages
outbuf output ufier type :- ((D,1,3.'X*),(3,2,3,'Z')0

(3, 4,3.''), (2,5,3, ''),

end record;

type smabins4 state type is
record
next : Integer :- 5; -- address of downstream ne0igbbor
I : integer :- 4; -- stations own address
ctr: integer range 1. (k+l) :0 1; -- counter for massages sent

i : integer range 1..k :- 1; -- index for output buffer
Lnbuf Input buffer type; -- stores the received mesages
outbuf outputbuffertype :-((D,1,4. 11),(2,2,4,111),(2.3,4,'11),(9,3,4, o11),

end record;

type macbinos5.tateotype is
record

next : Integer :- 6; -- address of downstream neighbor
I : Integer :- 5; -- stations own address
atr: integer range 1.. (k+l) :- 1; -- counter for massages sent

I : integer range 1..k :- 1; -- index for output buffer
iLnbuf Input buffer_type; -- stores the received massages
outbuf output buffertype ((D,1,5, 'V), (3,2,5,'Z1), (2,3,5,'1'), (1,4,5, 'X),

(3,6,5, '!'), (3,7,5, '!'), (3K,6,5, '!'));

end record;

type eachine6.state.type is
record
next : Integer :- 7; -- addrets of downstream neighbor
I : integer :- 6; -- stations own address
ctr : integer range 1.. (k+l) :- 1; -- counter for massages sent

i : integer range 1..k :- 1; -- index for output buffer
Lnbuf input buffer type; -- stores the received massagea
outbuf outputbuffertype:- ((D,1,6, 'I').(,2.6,'!').(3,3,6,'!').(1,4,6.'!'),

end record;

type -ach•n•_est&te type Is
record

next : Integer :- 8; -- address of downstream neighbor
I : integer :- 7; -- stations own address
atr : integer range 1.. (k+l) :- 1; -- counter for massages sent
j : Integer range 1..k :- 1; -- Index for output buffer
inbuf input buffer typo; -- stores the received messages
outbuf outputbuffer type:- ((D,1,7, '1'), (1,2,7,'1'), (2,3, 7 ,'1'), (9, 4 , 7 ,'1'),

(3,5,7, '!'), (3,6, 7,'!'), (3,6,7, 'Z'));

end record;

type machine8 state type is
record
next : integer :- 1; -- address of downstream neighbor
I : integer :- 8; -- statLons own address
ctr : Integer range 1.. (k+l) :- 1; -- counter for messages sent
j Integer tango 1..k :- 1; -- index for output buffer
inbuf input buffer type; -- stores the received messages
outbuf : output buffer type :- 1,8, 1 V), M12,8,'Z1), (3,3,8, 11), (1,4,8, 11),

(3,,6,.'!'), (1,6,8,'!'), (1,7,6, 'X'));

end record;

type glob&alvariable type is
record

4DIU : ID•!UN _5P :.(T,1,2,'1');
end record;

end definitions;

106

Variable Definitions
There are seven messages in outbuf variable of each machine and each machine sends

one message to the other machines in the network.

with MM1T 1O; use TMr 10;
package cJfinit ions isa

nun of machine : constant :- 6;
k : constant :- 7; -- numer of rows (messages) in output buffer
type son-transition type is (passl,paas2,pasa3, paa&4,passS,pass6,

pa. s7, pmas8, get tkl, get tk2,
get tk3,get tk4,got tk5,got tkG,
get_tk7, get-tks, iti- , Xit2, Xint3,
XZlit4,XamtS, LtXamit7, XmiLt8,moroeD1,
roreD2, moreD3, foreD4, moreDS,
morelD, moreD7, moreDS, pa.. tk4]pa.. tk5,
pass tkh, pa.a tk7, pa.. tkI,
pass tkI,pass tk2,pass tk3,
rcVI, rov4, raw, ravE, rcv7, rowS,
rav2, rav3, readyl, ready2, ready3,
ready4, readyS, ready6, ready7, readyg *unused);

type duy type is range 1..255;
type t field type Is (D,T,3);
pa•cage t field enum io is new enummration 10(t_field type);
use tfieild enum is;-

type =IDIUM_•1i1 is
record

t t field type;
DA Integer range 1. .8;
SA integer range 1. .8;
data : character;

end record;

type input buffer type is
record

DA integer range 0..8 :-0;
S integer range 0..6 :=0;
data : character :- '11;

end record;

type output buffer type Is array (1..k) of EDIUMN TYPi;

type machinel state-type is
record

next : integer := 2; -- address of downstream neighbor
i : integer :- 1; -- stations own address
ctr : integer range 1.. (k+l) := 1; -- counter for messages sent
j : integer range 1..k :- 1; -- index for output buffer
inbuf input buffer type; -- stores the received messages
outbuf output buffer type : ((D,2,l,''),D,3,l,'),

end record;

type machine2_state type is
record

next : integer := 3; -- address of downstream neighbor
i : integer :- 2; -- stations own address
ctr : integer range 1.. (k+l):- 1; -- counter for messages sent
j : niteger range 1..k :- 1; -- index for output buffer
inbuf inputbuffer-type; -- stores the received messages
outbuf output-buffer type :- ((D,1,2,'I'),(D,3,2,'I'),

(D,4,2,'!'), (D,5,2, '1'),
(D,E,2,'I), (D,7,2,'V'), (D, 8,2,'I'));

end record;

107

type maohine3_tate-type Is
reoord

next : integer :- 4; -- address of downstream neighbor
I : Integer :- 3; -- stations own address
€tr : integer range 1.. (k+l) :- 1; -- counter for Iassages sent
S: Integer rang 1..k :- 1; i- index for output buffer
Lnbuf input buffer type; -- stores the received messages
outbut outpt buffer type : ((D,]L,3,-Z°),(D.2,3,'V),

(0, 4,3, 'Z'), (D,5., 'Z'),
(D,6,3,'VO),(D,7,3,'Z1), (D,0,3,''));

end record;

type machn4-stats *type is
record
next : integer :- 5; -- address of downstream neighbor
I : integer :- 4; -- stations own address
atr : integer range 1.. (k+l) :1 1; -- counter for messages sent
j : integer range 1..k :- 1; -- index for output buffer
inbuf input buffer type; -- stores the received massages
outbuf : output bffer type : ((D,1,4,''),(D,2,4,'Z'),(D,3,4,'Z'),(D,5,4,1Z').

(D,6,4, '), ,7,4,1), (D,8,4,Z));
end record;

type machineS state type is
record

next : lateger :- 6; -- address of downstream neighbor
I : integer :- S; -- stations own address
ctr : integer range I.. (k+l) :- 1; -- counter for messages sent
j : integer ran"e 1..k :- 1; -- index for output buffer
inbuf input buffer type; -- stores the received massages
outbuf : outputbuffer type :- ((D,1,5,'X1), (D,2,5 ,'1'), (D,3,S, I1), (D,4,5',').

(D, 6, , 1Z), (D, 7,5, 'I'), (D, 9,5, 'I'))

end record;

type machine6 state-type ts
record
next : integer :- 7; -- address of downstream neighbor
4 : integer :- 6; -- stations own address
ctr : integer range 1.. (k+l) :- 1; -- counter for massages sent
j : integer range 1..k :- 1; -- index for output buffer
Inbuf input buffer type; -- stores the received massages
outbuf : outpu-t bufer type ((D,1,6,:-V), (D,2,6, Z'), (D,3,6,'11), (D,-4,6,'1'),

(D, 5,6, 'Z', (0, 7,6, 'I'), (D, 8.,6, 'I'));

end record;

type machine7Tstateotype is
record

next : integer :- 8; -- address of downstroem neighbor
I : integer :- 7; -- stations own address
ctr : integer range 2.. (k+l) :- 1; -- counter for messages sent

i : nteger range 1..k :- 1; -- index for output buffer
inbuf input buffer type; -- stores the received messages
outbuf : output buffer type:- ((D,1,7,'1'), (D,2,7,-Z'), (D,3,7,'), (D,4,7,),

(0,5,7,'!'), (D,6,7,'!'), (D,9,7, 'I'))3;

end record;
type machineS state type is

record
next : integer :- 1; -- address of downstream neighbor
I : integer :- 8; -- stations own address
ctr : integer range 1.. (k+l) :- 1; -- counter for massages sent

I : integer range 1..k :- 1; -- index for output buffer
inbuf : Input buffer type; -- stores the received messages
outbuf : output_buffer type:. ((D,l,8,'V),(D,2,8, 1),(D, 3,'),(D.4,8,'I'),

(D,5,S,!Z), (D,6,9,'V), (D, 7,S,!'));

end record;
type global variable type is

record
NDZ•UM : MUIU-DTYIP :i(T,l,2, ');

end record;

end definitions;

108

Predicate-Action Table

separate (main)
procedure analyzeý Predicates Nachinel (local machipel state type;

global global Variable tpe
a :natural;
v in out transition stack~package. stack) Is

begin
case a is

when 0 -
if ((global.NDSDZU.t - D) and (global. MDrUM. DA - local.i))then

pua (v, ravl);
end if;
If ((global.MD!UK.t - !) and (global. MDIUK. DA - local.i)) then

push(w,get_tkl);
end if;

when 1 ->
push (w, readyl);

when 2 ->
If (local.outhuf(local.j).t /- X) then

push (w, lait1);
end if;
if (local.outhuf(local.j).t -32) then

pueh(w,passl);
end if;

when 3 ->
if ((global.UDrUNMt Z) and (looal.outbuf(local.1) .t I-) and

(local.ctr <- k))then
push (w,, aoreDl);

end if;
if ((global.IUDIUN.t -) and C(local. outbuf (local.J) .t 2)

or (local.ctr w (k+l))))then
push(w, pass tkl);

end if;
when others -

null;
end case;

end AnalyzePredicates Kachinel;

separate (main)
procedure Analyze Predicates Nachine2 (local : achine2 state-type;

global :global variable type;
a natural;
w in out transition staok~packags stack) Is

begin
case a is

when 0
if ((global.=DXUM.t - D) and (glohal.MDDIUK.DA - local.i)) then

push v, rcv2);
end if;
If ((qlobal.DUDIUN.t - !) and (global.IUDZUN.DA - local.i)) then

push (w, get tk2);
end if;

when 1 ->
push (w, ready2);

when 2 ->
If (local.outbuf(local.j) .t /- 3) then

push (w, Xmit2);

eand if;
if (local.outbuf(local.j).t - 3) then

push(w,pass2);
end i f;

when 3 ->
If (Cglobal.IUDIUN.t - 3) and (local. outbuf (local.J) .t I-) and

(local.ctr <- k))then
push Cv,wmreD2);

end It;
it ((global.WIMU. t 0 a) and ((local -Outbuaf (local -) t- t)

or (looal.atz (k+l))) then
push (w, pass tk2);

and it;
When others -

null;
end case;

end AnalyzePredicates ' Kaehine2;

separate (main)
procedure AnalysePredIcates Kachine3 (local machime3 state type;

global global a~ri&Abletype;.
a natural;
w in out transition staokpaawkage.stack) is

begin
case a is

when 0 n

if ((global.IUDZU.t w D) snd (global.ImZUN.Dk w lowal.i)) then
push (w, rcv3);

end if;
if ((global.NCDIUN.t - 2) and (global.MDI1UN.DA w local 1))then

puah(v,get~tk3);
endA if;

when 1 ->
push Iv.readyS);

when 2 ->
if (looal.outbuf(looal.j).t /- R) then

push(v,Xmit3);
end if;
It (local.outbuf(local.j) .t - I) then

pusb(v,paa&3);
end if;

when 3 ->
if ((global.U WDIK. t - 3) and (local. outbuf (local. J) . t 9-) and

(local.atr <-n k))then
push(w,uor~eD3);

end if;
if ((global.MDUDZ.t = I) and ((local. outbuf (local. J) At 1)

or (local.ctr - (k~l)))then
pushlw. pass tk);

end If;
whein Others

null;
end case;

end AnalyzsePredicates Kachine3;

separate (main)
procedure Analyse _Predicates Kachine4 (local: machin4 state t~;

global :global varia~le type;
a natural;
w in out transition stack~package stack) Is

begin
Case s is

when 0 ->
if ((global.UUDXUN.t - D) and (global. MDIH. DA - local.i)) then

push (w, rcv4);
end if;
If ((global.IUDXUK.t - T) and (global.MUDIUM.Dk a local~i))then

push(w,get~tk4);
end If;

when I ->
push v, ready4);

when 2 w>
If (local-outhuf(local.j) .t /- 3) then

110

end it;
If (local.outbuf(local.j) .t - Z) then

push (w, pasa4);
end If;

when 3 a'
if ((glabal.NSDIUK.t - Z) and (local.outbuf(local.j) .t /- Z) and

(local.atr <- k))then
push (w, aoreD4);

end if;
if ((global.IUDIUK.t - a) and ((local.outbuf(local.j) .t Z)

or (local.atr - (k~l))))then
pusb(v, paasstk4);

end if;
whnother& -

end case*;

end Analyze Predicat*aNaohine4;

separate (main)
procedure Analyze _Predicates KachineS (local : machin5 state type;

global :global wariaS~letype;
a natural;
v in out transition stack~package stack) is

begin
case a is

when 0 ->
if ((global.MKDIUK.t - D) a"d (global. MRDIH.ODA - local.i))then

push (w, rcv5);

eand if;
if ((global.MIDUKM - T) and (global. SDZUK. DA - local.i) than

push (w,get tk5);
end if;

when I ->
push v, ready5);

when 2 ->
If (local.outbuf(local.j) .t I-) then

push(w,Xamit5);
end if;
if (local.outbuf(local.j) .t -) then

push(w,paaas);
end if;
whn3 ->
if ((global.DUDIUK.t - Z) and (local.outbuf (local.j) .t Z-) and

(local.ctr <- k))then
push (w, MnrGDS);

end if;
if ((global.HEDXUK.t - 9) and C local.outbuf~local.j) .t Z)

or (local.ctr - (k~l)))then
push(m, pasa-tk5);

end if;
when others -

null;
end case;

end AnalyzePredicates KachineS;

separate (main)
procedure Analyze _Predicates KachineE (local : achineG state type.

global :globaf-varia~lo type;
a natural;
w In out transition stack~package stack) Is

begin
case a is
when 0 ->

if ((global.3XUDZ.t - D) and (global.IXUDM.D& - local.i)) then
push (w, rCOW);

If ((global.IUDXUM.t - 1) and (global.DXUDZ.Dk - l@cal.i))then
push (v. et tkG);

end If;

when I ->
push (w, resdy6);

when 2 ->
if (local.outbuf(local.j).t /- 3) then

pqash(w,xaitG);
end it;
If (1@cal.outbuf(local.j) .t - Z) then
push(w~pasms);

end If;
when 3 ->

If (iglobal.MaUDZI.t a Z) and (local.outhuf(local~j) .t I-) and
(local.ctr <- k))then

pusb(m,moreDS);
end If;
if ((global.IUDXUM.t w a) and ((local.outbut(local.j) .t 1)

or (local.ctr - (k+l)))) tbon
push(w, pass-tkE);

end if;
when others -
null;

end case;

end analyze Predicates Machineg;

""eprate (main)
procedure Analyze _Predicates Machine? (local machine? state-type;

global :global variable type;
a natural;
v in out transition stack~package. stack) in

begin
case a is
when 0 =>

if ((global.=DXUH.t - D) and (global.1UI)UN.OA - local.i)) then
push (w, rcv7);

end if;
if ((global.NtDrUM.t - T) and (global.3=DIUM.DA - local.i))then
push(w,gettk7);

end if;

when I ->
push (v.ready7);

when 2 ->
if (local.outbuf(local.j) .t I-) then
push(w,Xait7);

and If;
If (local.otztbuf(local.j) .t a) then
push (w, pmss?);

end if;
when 3 ->

if ((qlobal.IUDrUN.t - 3) and (local.outbuf(local.j) .t I-) and
(local.ctr <- k))then

push(v,mor*D7);
end if;
if ((glob&l.MD!1M.t - 2) and ((local.outbuf(local.j) .t 9)

or (local.ctr - (k+l)))then
push(w, paass t);

end if;
when others .

112

null;
end case;

end AnalyzePredicates Kachine7;

separate (main)
procedure Intalyue~redicates Maehines (local :machines-state type;

global :global variasie type;
a natural;
v in out tranaition-staok-packag . stack) is

begin
case 0 is
Mhen 0 ->

if ((global.=DZUN.t - D) and (global. UOZUN. DA - looal.i))then
push (w, rcvB)

end if;
If ((global.3UDZr.t - T) and (global.IUD!U.DA - local.i)) then

push (w,get tki);
end if;

when 1 ->
push (w, readyB);

when 2 ->
if (local.outbuf(local.j) .t I-) then

push (v, nits);
end if;
If (local.outbuf(local.j).t -a) then

puah(m,passl);
end if;
whn3 ->
if ((global. DDZUM. t - 2) and (local. outbuf (local.)t 2-) and

(local.ctr <- k))then
push (w. moreDa);

end if ;
if ((global.=IMDU.t - 3) and ((local.outbof(local.j) .t -3)

or (local.ctr - (k+l)))) then
push(w, pass tkS);

end it;
when others

null;
end case;

end AnalyzePredicates MachineS;

separate (main)
procedure Action (in system state :in out Getate-record Itype;

in7-transi~tion :in out son transition type;
ouit system-state in out Ustate-record type) Is

begin
case in transition is

when 7avi ->
out,_system state machinel state. inbuf .5k

:-in system state. global variables .I=DZN. LA;
out system-state macbinel state. inbuf data

:-in__systen state global variables .=DrUD.data;
when rcv2 ->

out system -state .macbine2 state. inbuf . A
.- in-system-st ate global variables .NRDrVN. A;

out system -state .machine2 state. inbuf data
-=in system state. global-variables .UDXUM.data;

when rcv3 ->
out system state . mchine3 state. inbuf.LA

,min system state global variables .MDZUN.8k;
out system state .macbine3 state. inbuf.data

113

when rov4
out systemt state .maohin4 state. inbuf .SA

.-in- ystemi stat~e global variables .IUDZU. A;
out-system atate machined state. tahE. data

:-in systemaista"teglobal variables .NDUD.data;
when rowS -n)

out Saystem state machines state. tbaho. L
:-in system state .glabal variables. W.IU. SA;

out system starte machines state.ntam. data
.-in system tate "global variables .MDUDZUdata;

when rovG ->
out-aystaem state mUaChine stAte. AhoE. IL

:-in system state .global variables .UDUIM.8A;
out systemi sta~te usohine state. iarmaE data

:inia.system state gqlobal variables .NUDXU. data;
when rav7 ->)

out system state .sacbtae7 state.itaho. IA
:-in system tate ".global variables .IDZUK. LA;

gmat system stAtatemscbias? state. inruf. data
:-in system starte global variables .IDZN.,data;

when cc"->n
out system state machineS state. inbuf. LA

:-in system state global variables .IUDUK.SA;
out _systemwsta~temachines state. inrmcfdata

:-in system sta~te global variables .=DUZ. data;

when readyl I ready2 I ready3 I readyd IreadyS Iready6 Iready i readyl -
outsaystem state global variable .IUDIUN.t :w 3

when get tk2. ->
out system state global variables. =DIMU.t :-3
out system stat .smachinel state . ot :- 1;

when get .tk2 ->
out _syastm state global variables. =XDIM.t Z-
out system sotate. machine? state. tr :- 1;

when gettk3->
out system state. global variables .DSD!N. 3
out system -state .. achine3 state .ctr :- 1;

when get tk4 ->
out system state. global variables .MDDI . t 3
out system state machine4 state .ctr :- 1;

when gtt5-
out system state. global variables .=D!M. t -
out system state machines state. Otr :- 1;

when geýt thE->
out-system -state global variables .=OIuU.t :-
out system state machineS state .Otr :- 1;

when get tk7 ->
out sys-tem _state global variables.WIMAK~ :-
out system ~state .machirae7state .Otr :- 1;

when get tkS ->
out -system state. global variables .MIUDZN. 3
out system -state machineS state .Otr -;

when pasal I pass tkl ->
out-system state global variables .inDMA t - ;
out system state global variables .IUV!U. DA

:- in system state.machinal state .next;
out system state .globiil vsariablIes.0!XUK.dat~a :- IV;
out system state global variables .IUO!U. L

:- In systemastate machinel state. i:
when pass2 I paasatk2 a5

out system state.global variables .MDrUNAt :- 7;
out system state. global variabloes.MImZN. DL

:- In system state machine? state. neit;
out system stats .globil variablees.3UDZU.da~ta :- 31;
out system sotate global variables .UDrUN.5L

:- In system state machine? state. 1;
whben pass3 I pass tk3 w6
out system state global variables .IUDIU.t :- T;

114

out mystem state global variable. .DrUM.DA
:- in system atate .aobhine3 stat. .nezt;

out ayatem state global variablesJUSDr9K da~ta :- 3Z;
out saystem state. global7,variables .IUDI. S

:- in. system-state .maaine3astate.i;
when pass4 I paas~tk4 ->3

out system-state.,global variables .MMUDU t- T;
out system state. global variables .WIDZ.D&L

:- in system state .saobine4 state .nazt;
out-system state global variables .DrUN.da~ta :- 3Z;
out-system state. global variables. .IDZU. SAL

.: inaystemstate.aaabine4astate.i;
when paass I pass-t:5 =>

out asystem state. global variablea .=DrUN-t :-7
out aystem state, global variables .ISDZUKDA

:- In-SyfftQM state IMAChine sftate. neXt;
out system-state: global variables. .IUM. data :- W;
out,_system s1tate global variables .ISDI.SI

- in system state machineS astat.i.
when pass6 I pass thE6 =>

out-system state global variables .MIXM.t :-
out-system state. global variables .IUDIU. Dh

:- in system state macbineE stat . next;
out-system state global variables .USDru.data :- '3';
out system state. global variables .IDIWE. SI

-in _systew state machine6 state. i;
when pass7 I pass tk;7 M>

out system state. global variablesJ~= .ZIMt :- 2;
out system sRtate, global variables .DDIUN.DI

:- in-system state .macbine7 state, next;
out-system-state. global-variables. .UDrK. data :- 13';
out system state global variables .M50131.2

.- in system state.maahine7_state.i;
when passe I pass-thU8 -3>

out system state global variables .USDrUH.t :- T;
out-system state global variables .ZDlUN. DI

:- in system state machineS state .next;
out system state global variables .UDrUN.data :- '3';
out system state global variables .ISDIUN. SI

:- in system state machines-atate.i;

when Xmitl ->
out system state. global variables .*DIUM
:- in system-state machineil state .outbuf (in system state machinel state. j);

out system state macbinel st~ate .outbuf (in-system state. macbinel-state. J) .t :- 3;
out system state macbinel state .ctr

:- (in system 'statemsachinel state.ctr mod 8) + 1;
out system state machinel-state.j

:- (in _system state. achinel state. j mod 7) + 1;
when Xmit2 ->

out system state. global variables .15013
:- in-systemt state .aachine2_state .outbuf (in system state .mchine2 state. j);

out system state. sacine2-state. outbut (in system stato.machine2 state. J) At : ;
out system state .machine2 state. ctr

:- (in system state .maahine2 state .ctr mod 8) + 1;
out system state .machine2 sitate.j

:- (in system state. macbine2 stste. j mhod 7) + 1;
when Xmit3 ->

out system state. global variables .ISDruN
:- in system state .mcbine3 state.outbut (in system state .mahine3-atate. J);
out dystem state.sacbine3 state.outbuf(in-systes state. machine3 atate.j) .t :- ;

out system state . mchine3 s;tate. ctr
:- (in system -state.maabina3 stata.ctz mod 8) + 1;

out system state .macbine3satate.j
:- (in system state.machin%3 state.j mod 7) + 1;

when Kait4 ->
out system state. global variables .16013

:- in system-state machined satte .outbuf (in system state machined state. j);
out systmemstate machined state .outbuf (in system state machined state. j) .t :- 9;
out system -state machined state. ctr

:-(in system state machined state.ctr mod 8) + 1;

115

out saystem tate macbinel atate .1
wbanXm~t -> :- (in .system state. .uaaine4 stat.. j mod 7) + 1;

out system state, global variables. .DDZ
:Z in system state .macbin.5 state. outbuf (in system-stat. .macbine5 state.)

out system state. machineS at~ate. outbuf (in system-state machinSs~tat.. J) .t :0 Z;
out system state machineS state .ctr

:- (in-system atate machineS state. Otr mod 8) + 1;
out_system atate machines state. j

:- (in _system state~machineS state<j mod 7) + 1;
when Xmit 6 ->

out,_system state. global variables .3UDIU
:- in system state machineE stat. .outbuf (in saystem state .macbine6 state. j);

out-system state .machine6 state outbuf (in system state machineE state. j) .t :- 2;
out system state . mchine6 state .ctt

:- (in system state machineE state. otr mod 8) + 1;
out system-state macblas6 state.j

:- (in -system state machineE state. j mod 7) +. 1;
wben Knit? w>

out system -state .glabal variables .MDUDX
:- in system-state machine? state outbuf (in system state machine7_state. j);
out system state machine?_s~tate .outbuf (in _system s~tate machine? s-tate.j) .t :-3;

out _system state machine7 state .Otr
:- (in system state .machine? state .ctr mod 8) + 1;

out system-state machine?_state. j
:- (in _system state machine? state. j mod 7) + 1;

when KnitS ->
out system state, global variables .IUDIUDE

:- in system-state machineS state. outbuf (in-system-state. machineS-state.)
out system state machineS st-ate .outbuf (in system state machineS-state. j) .t :- ;

out system state.-achineS state .atr
:- (in system state~machineB state.ctr mod 8) + 1;

out system state . achineS st-at.. j
:-(insytnsaemcie tej mcd 7) + 1;

when moreDl I moreD2 I moreO3 ImoreD4 ImoreDS ImoreDE IaoreD7 ImoreDl a>.
null;

when others -

put ("irror in action procedure");
end case;

end Action;

116

Output Format

separate (main)
procedure output Otuple (tuple :in out Gotate-remcd-type) Is
begin

If print header then
new line (2);
set col (7) ;
put line C'ml, m2, m3,.4, m5, as, m7, so, IUDrux. t, =Drum. Da, IUDIUK. Sh, IUDIU. data");
print header :- false;

oleo
put (- " integer' iage (tuple machine state (1)))
put("
put (integer'I image (tuplo machine state (2)))
put(" ,)
put (integer *image (tuple machine state (3)))
put(" ,)
put (integer' image (tuple machine state (4)))
put(V , "
put (integer image (tuple machine state(S)))
put(V, "
put (Integer' image (tuple machine state (6)))
put V ,)
put (integer'image (tuple machine state (7)))
put(" , "1;
put (integer'image (tuple machine state(S)))
put(" ,")
t field enum ic .put (tuple .global variables .IUDIU. t set -> pr-case);
Patv -) 1;
put(tuple.global-variables.NUDIUM.DA, width ->1);
put V , "
put(tuple.global-variables.=DIUM.SA, width ->1);

put (" , *
put (tuple global variables .=IUD!U.data);
put(" I");

end If;
end output tuple;

117

Program Output (No Message in outbuf Variable)
NZAVCUBZLITT ANULTSXZ of :tbS.am

SlF3CZIXC<ZOU

I Machine I State Transitions I

I Ir"m I To I Transition I

1 0 1 1 1 ravl
1 0 1 2 1 gottkl

I 1 0 1 resayi
2 1 3 1itl
2 1 0 1pasal
3 1 2 1 noredl I
3 1 0 1 pa.._tkl I

I Machine 2 State Transitions I

I From I To I Transition I

1 0 1 1 1royv2
1 0 1 2 qet tk2

1 0 ready2
2 3 31 at2 I
2 0 1pass2
3 2 1 mored2
3 0 1 pass tk2

I Machine 3 State Transitiona I

I From I To I Transition I

1 0 1 1 1 rcv3 I
1 0 1 2 1 gettk3 I
1 1 1 0 1 reedy3
1 2 3 1 LLt3I
1 2 1 0 1 pass3 I

3 2 mored3
3 0 pass tk3

I Machine 4 State Transitions I

I From I To I Transition I

1 0 1 1 1 rcv4
1 0 1 2 1 wt tk4

1 0 1 ready4
2 3 1x1= t4
2 0 1 pass4
3 2 mor*d4
3 0 1 pass tk4 I

I Machine S State Transitions i

I From I To I Transition I

1 0 1 1 revs

0 1 2 1 got tW5
I 1 0 I ready5 I
2 I 3 31 tS I
2 1 0 pasas5
3 1 2 1 siordS
3 1 0 1 pa.s.tk5

118

IN •'

I machine 6 State Tranaitiona I

I From I To I Transition I

0 1 2I •fy
0 2 got tk I
1 a0 I mady
2 3 3In tf
2 0 pLaseS
3 2 mor.46
3 0 L pasatk I

I acbsIhn 7 State Transition* I

I From I To I Transition I

0 1 rov7
0 2 got tk7
1 0 I reay7
2 3 mait7

1 2 1 0 pass7 I
3 2 more17
3 0 pass tk7

I Machine S State Transitions I

I From I To I Transition i

0 1 rave
0 2 getttk8
1 0 ready&
2 3 I ltS8
2 0 pass$
3 2 mr.oed8
3 0 pass.tkS

SYStNM ZLACHMILZTY GRAPH

0 0, O, O, 0, 0, 0,O, 0 0 gettkl 1

1 2, O, 0, 0,O, O, O, 0 0 pasal 2

2 0,O, 0, O, O, O, O, 0 i get tk2 3

3 0, 2, 0, 0,O, O, 0, 0 0 paaa2 4

4 0, 0, 0, 0, 0, 0, 0, 0 2 qut_tk3 5

5 0, 0, 2, ,O, 0, 0, 0, 0 pass3 6

6 0, 0, 0, 0, 0, 0, 0, 0 3 qat tk4 7

7 0, 0, ,2, 0, 0, 0, 0 0 pass4 a

a 0, O, O,0 ,0 , O, 0, 0 4 get tk5 9

9 0, 0, 0, 0, 2, 0, 0, 0 0 paseS 10

10 O, O, O, 0, O, O, 0, 0]5 qet_tk6; It

11 0, 0, 0, 0, 0, 2, 0, 0 0 pas86 12

12 0, 0, 0, 0, 0, 0, 0, 0 6 9et tk7 13

13 0, 0, 0, 0, 0, 0, 2, 0 0 pass7 14

119

14 0. 0, 0. 0O, O,0, 0 7 qmt..tkl 15

25 O. O, 0. 0, O. 0, 0, 2 0 pamaS 0

SUtaY OF RZ3CEWIILITY AlniaYSZS (ANALYS• S COWIZ• ID)

number of atets. generated :16
Nmuber of states analysed :16
Number of deadlocks : 0

9/10MCUZr TRJAZNZIONS

I machine 1 Unxmacuted Transiltlons

I Vram I To I Unex•eated Transition

I 0 I1 I roai
I 1 10 I readyl
12 13 I =mitt

I 3 I2 I morelI
I 3 I 0 I pas tkl

I Machine 2 Uneoxeuted Transitions

I From I To I UnOxeouted Transltion

I 0 I 1 I rcv2
I 1 90 I ready2
12 13 I xmt2
I 3 I2 I nored2
I 3 I 0 I pass tk2

I Machine 3 Vnexecutod Transitions

I From I To I Unemeauted Transition

I 0 I1 I rov3
I 1 10 I ready3
12 13 I it3
13 12 I nored3

3 I 0 I pass tk3

I Machine 4 Unexecuted Transitions

I From I To I Unexecuted Transition

I 0 I1 I rcv4
I 1 10 I rady4
I 2 I3 I it4
I 3 I2 I morod4
I 3 I 0 I paso tk4

I Machine 5 Unezecuted Transitions

I from I To I Unexecuted Transition

10 I1 I rovS
I 1 10 I readys
I 2 I 3 I mit5
I 3 12 I woredls
I 3 I 0 I pass.tkS

120

iMachin 6 Unehecuted Transitions

I Frm I To I unwmauted Transition

I 0OI I rayS I
I 110 I readys
12 I3 I lts I
I 3 2 I mozrdG
I 3 I 0 I pass, tktG

I Machine 7 Unexecuted Transitions

I From I To I Unexecuted Transition

I 0 I 1 I rcv7
I 1 I 0 I r.ady7
I 2 13 I xmit7
I 3 12 I -,red7
I 3 I 0 I pass.tk7

l Machine 8 Unexecuted Transitions

I From I To I Unezeouted Transition

I 0 I1 I rave
I 1 10 I ready8
I 2 13 I u•tt
I 3 12 I ,orsedS
I 3 I 0 I passttk8

121

Program Output (One Message in out bsf Variable)

SYSTN RICEMIUA•.Y oUwn
0 o 0, 0, 0, 0, 0 o, 0, 0o 0 get-tkl 1

1 12, 0, , 0, 0, 0, 0, 00 0 --atl 2

2 3, 0, 0, 0, 0, 0, 0, 00 0r€v2 3

3 3, 1, 0, 0, 0, 0, 0, 0 0 ready2 4

4 3, 0, 0, 0, 0, 0, 0, 0 1 passtkl 5

5 0, 0, 0, 0, 0, 0, 0, 0 2 qet tk2 6

6 (0, 2, 0, 0, 0, 0, 0, 0 0 xn1t2 7

7 0, 3, 0, 0, 0, 0, 0, 0 0 rawl a

S(1, 3, 0, 0, 0, 0, 0, 0 0 readyl 9

9 f 0, 3, 0, 0, 0, 0, 0, 0 1 1 pass tk2 10

10 0, 0, 0, 0, 0, 0, 0, 0 2 get_t3 11

11 0, 0, 2, 0, 0, 0, 0, 0 0 xalt3 12

12 0, 0, 3, 0, 0, 0, 0, 0 0 rov1 13

13 1, 0, 3, 0, 0, 0, 0, 0 0 readyl 14

14 0, 0, 3, 0, 0, 0, 0, 0 3 1 pa.sstk3 15

15 0, 0, 0, 0, 0, 0, 0, 0 3 get-tk4 16

16 0, 0, 0, 2, 0, 0, 0, 0 0 x--t4 17

17 0, 0, , 3, 0, 0, 0, 0 0 ral is

18 1, 2 , 0, 3, 0, 0, , 0]0 readyl 19

10 j 0, 0, 0, 3, 0, 0, 0, 0 1 1 pass.tk4 20

20 0, 0, 0, 0, 0, 0, 0, 0 ,0 4 gat tk5 21

21 0, 0, 0, 0, 2, 0, 0, 0 0 xaft5 22

22 0, 0, 0, 0, 3, 0, 0, 0 0 rcvl 23

23 1, 0, 0, 0, 3, 0, 0, 0 0 readyl 24

24 0, 0, 0, 0, 3, 0, 0, 0 1 1 passmtk5 25

25 0, 0, 0, 0, 0, 0, 0, 0 5 get_tk6 26

26 0, 0, 0, 0, 0, 2, 0, 0 0 xnlt6 27

27 0, 0, 0, 0, 0, 3, 0, 00 0rvl 20

28 1, 0, 0, 0, 0, 3, 0, 0 0 readyl 29

29 1 0, 0, 0, 0, 0, 3, 0, 0 1 1 paa. tk6 30

30 0, 0, 0, 0, 0, 0, 0, 0 6 qet tk7 31

31 0, 0, 0, 0, 0, 0, 2, 0 0 xnlt7 32

32 0, 0, 0, 0, 0, 0, 3, 0 0 ravl 33

33 1, 0, 0, 0, 0, 0, 3, 0 0 readyl 34

122

34 0, 0, 0, 0, 0, 0, 3, 0 31 pass tk 35

35(0, 0, 0,0,0,0, 0, 0 7 gmt-tkl 34

36[0, 0, 0, 0, 0, 0, 0, 230 iwt* 37

37 0,0, 0, 0, 0,0,0, 3 0 ravi 38

381, 0, 0, 0,0, 0,0, 3 0 readyl 39

39(0, 0,0, 0,0, 0,0, 311 passatkl 0

SUMMARY OF 31ACABU5LZTY 1NM.T3I5 (ANALYSIS COWLtzDw)

---- ---- --of----ta- -e-- ---- --- ---- ---:--0
Number of states aenealyed :40

Number of deadlocks : 0

VMZXCU22D TRNiSITIONS

I Machine 1 Unexecuted Transit ions

I From I To I Unexecuted TransitionI

I2 10 Ipassl

I 3 12 I iozedlI

IMachine 3 Unexecuted Transitions I

From I To I Unexecuted Transition

I2 10 Ipass3
I3 12 I moredi

I Machine 3 Unexecuted Transitions I

I From I To I Unexecutied TransitionI

I0 1l rcv3
I1 10 I ready4
I2 10 I pass3
I3 12 Imored3

I Machin. 5 Unexecuted Transitions I

I From I To I Unexecuted. TransitionI

I0 Il1 rowS
I1 10 I ready4
I2 10 I pass4
I3 52 ImoredS I

-- -- -- -- -- -- -- -- -- --123- --

I Machine 6 Unixacuted Transitions

I From I To I Onexacutod Transition

It 0 Ii I avE I
I 1 I 0 I rady6

I 2 I0 I passE
I 3 12 I nored

I Macbin. 7 Uneneoutod Transitions

I From I To I unesamutod Transition

I 0 I1 I rov7
I 1 0o I r.ady7
I 2 10 I pass7
13 12 I mr*d7

I Machine 6 Unzxecuted Transitions

I Frao I To I Un~eacuted Transition

I 0 I1 I rav.
I 1 10 I reaady$
I 2 I0 I pass8
I 3 12 I noredI

124

Program Output (More Than One Message in outbuf Variable)

SYST3 l.WCM ILaZLTY GRAUP
0 0, 0, 0, 0, 0, 0, 0, 0 0 get-tkl 1

1 2, 0, 0, 0, 0, 0, 0, 0 0 imitl 2

2 3, 0, 0, 0, 0, 0, 0, 0 0 rav2 3

3 3, 1, 0, 0, 0, 0, 0, 0 0 ready2 4

4 3, 0, 0, 0, 0, 0, 0, 0 1 oredL 1

SUMMARY OF RU'ACUAI5IrTY ANALYSIS (ANALYSIS COMLITZD)

Number of statee generated :5
Number of states analysed :5
Number of deadlocks : 0

UZIJCUTZO TRANSITIONS

I Machine I Unexecuted Tranaitions

I From I To I Unexeauted Transition I

I 0 I 1 I rovl
I 1 10 i readyl
I 2 I 0 I pasi
I 3 I 0 I pasatkl

I Machine 2 Unexecuted Traszitions

I From I To I Unezecuted Transaition

I 0 1 2 I get tk2
I 2 I 3 I imt2
i 2 I 0 I paas2
1 3 1 2 I morea2
I 3 I 0 I passatk2

I Machine 3 Unexmauted Transitions I

I From I To I Unexecuted Transition I

0 1 1 rav3
0 12 I gettk3
I 1 0 I ready3
2 13 1 it3
2 10 1 pass3
3 12 mored3
3 0 pass tk3

125

I Machine 4 Unexacuted Tranition I

I From I To I unemeoutod Tran•ition I

0 1 ray4
0 2 gettk4
1 0 ready4
2 3 -ILt4
2 0 Lpaas4
3 2 moved4
3 0 paa. tk4

I Machine S Unexoauted Transitions I

I From I To I Unexoauted Transltion I

0 1 roev
0 2 got tk5
1 0 readyS
2 3 XI its
2 0 pass5
3 2 ored,5
3 0 pa.s tk5

I Machine 6 Unexecuted Transitions I

I From I To I Unexecuted Transition I

0 2 roV6
0 2 get tk6
1 0 orady6
2 3 I uit6
2 0 passG
3 2 moredI
3 0 pas._ttkg

I Machine 7 Unexeauted Transitions I

I From I To I Unexeouted Transition

0 1 I rv7
I 0 12 go q tk7I
I 1 I0 I roaay7

2 3 wit7I
2 0 pa.7I
3 2 tooed"7
3 0 passatk?

I Machine 8 Unexeouted Transitions I

I From I To I Uneeoauted Transition I

0 1 roev
0 2 get.tk8
I1 0 ready$
2 3 =tlst
2 0 pass$
3 2 mored8
3 0 pass.tk*

126

Program Output (Global Reachability Analysis)

There are seven messages in ouabuf variable of each machine.

3Z&CUIBrITY ANALYSIS of :tb$&
SpaCZVICATION

I Machine 1 State Transitions

I From I To I Transition

1 0 1I l rc vl
1 0 1 2 1 got tkl
1 1 1 0 I resaayi1 2 1 3 1Imitl I
1 2 1 0 1Ipassi
1 3 1 2 1 mar.41
1 3 I 0 I pass thi

I Machine 2 State TransitionsI

I From I To I TransitionI

1 0 1 1 1Ircv2I
1 0 1 2 1 got tk2 I

I 1 1 0 1 rsaiy2
I2 1 3 1Iimit2
I2 1 0 1 pass2 I
I3 1 2 1 mored2
I3 1 0 1 pass tk2

I Machine 3 State TransitionsI

I From I To I TransitionI

1 0 1 l rcv3I
1 0 1 2 1 got tk3 I
II 1I 0 1 reaay3 I
1 2 1 3 1 xit3 I
1 2 1 0 1 pass3 I
1 3 1 2 1 morwD3
1 3 1 0 1 pass tk3 I

I Machine 4 State Transitions

I Froom I To I TransitionI

1 0 1 l rcv4
1 0 I2 1 got tk4

I1 I0 I reaay4 I
12 3 31 it4 I
I2 I0 1 pass4
I3 I2 1 mored4
I3 I0 1 pass tk4

I Machine 5 State TransitionsI

I From I To I Transition

1 0 1I l rcvS
1 0 1 2 1 got tk5

I 1 1 0 1 resaiYs
I2 1 3 1imitS I
I2 1 0 1 passS I

1 3 1 2 1 mored.5
1 3 1 0 1 pass tk5 IS

127

I machine 6 State Transitons I

I From I To I Transition I

0 1 revs
0 2 got tk6
1 0 reaiy I1 2 1 3 Iin LtG
2 0 pasgs
3 2 moredi
3 0 paess tkG

I Machine 7 State Transitions I

I From I To I Transition I

0 1 rav7
0 2 got tk7
1 0 reay7
2 3 3 ait7
2 0 pas. 7

3 2 mored7
3 0 pass tk7

I Macbine S State TrnanitLona I

I From I To I Transition |

0 1 rays
0 2 got tkS
1 0 reayyS
2 3 3 mitO
2 0 pasal$
3 2 imo,-dS
3 0 pass.tkS

RKACURABIZTY GRJUB
(ml, .2, u3, u4, as, a6, =7, .S, MRDrUM. t, IRDZUM. DA, IIDIUM. BA, INDrM. data]

0 0 0 0 0 0 0 0 0 T 1 2 , got tkl 1
1 2 0 0 0 0 0 0 0 , 1 2 1 I in tl 2
2 3 0 0 0 0 0 0 0 D 2 1 1 z•nr 2 3
3 3 1 0 0 0 0 0 0 D 2 1 1 ready2 4
4 3 0 0 0 0 0 0 0 , 2 1 1 Ioredl 5
5 2 0 0 0 0 0 0 0 , 2 1 1 xmtl 6
6 3 0 0 0 0 0 0 0 D 3 1 1 rcv3 7
7 3 0 1 0 0 0 0 0 D 3 1 1 •]e ady3 a
8 3 0 0 0 0 0 0 0 a 3 1 1) oredl 9
9 2 0 0 0 0 0 0 0 , 3 1 1 mJitl 10

10 3 0 0 0 0 0 0 0 D 4 1 1 raw4 11
11 3 0 0 1 0 0 0 0 D 4 1 1Z r ady4 12
12 3 0 0 0 0 0 0 0 , 4 1 1 wmoedl 13
13 2 0 0 0 0 0 0 0 2 4 1 1 -m!tl 14
14 3 0 0 0 0 0 0 0 D 5 1 1Z r•s 1s
15 3 0 0 0 1 0 0 0 D 5 1 1Z •adyS 16
16 3 0 0 0 0 0 0 0 , 5 1 l moedI 17
17 2 0 0 0 0 0 0 0 Z 5 1 1Z matl 1i
1 6(3 0 0 0 0 0 0 0 D 6 1 1Z r ws i9
19 3 0 0 0 0 1 0 0 D 6 1 1 ,Z eady 20
20 3 0 0 0 0 0 0 0 , 6 1 1 mozedl 21
21 2 0 0 0 0 0 0 0 3 ,6 1 1 3mtl 22
22 3 0 0 0 0 0 0 0 D 7 1 1 rcv7 23
23 3 0 0 0 0 0 1 0 D 7 1 ,h ready7 24
24 3 0 0 0 0 0 0 0 9 7 1 Z moredl 25
25 2 0 0 0 0 0 0 0 2 7 1 1Z] tl 26
26 3 0 0 0 0 0 0 0 D I 1 ZX ov 27
27 3 0 0 0 0 0 0 1 D 0 1 l readdy$ 26
28 3 0 0 0 0 0 0 0 a 1, 1 I pausatkI 29
29 0 ,0 ,0 ,0 ,0 ,0 ,0, 0, T ,2 ,1 , gettk2 30

128

30 0 2 0 0 0 0 0 0 , 2 1 ,] Lt2 31
31 0 3 0 0 0 0 0 0 D 1 2 1z ral 32
32 1 3 0 0 0 0 0 0 D 1 2 1Z z adyl 33
33 0 3 0 0 0 0 0 0 , 1 2 1]oir4d2 34
34 0 2 0 0 0 0 0 0 9 1 2 1]•it2 35
35 0 3 0 0 0 0 0 0 D 3 2 1]aw3 36
36 0 3 1 0 0 0 0 0 D 3 2 1]zrdy3 37
37 0 3 0 0 0 0 0 0 3 2 1Z mozed2 36
38 0 2 0 0 0 0 0 0 , 3 2]•Lt2 39
39 0 3 0 0 0 0 0 0 D 4 2 Z] rav4 40
40 0 3 0 1 0 0 0 0 D 4 2 1 , •ady4 41
41 0 3 0 0 0 0 0 0 3 4 2]mo•rd2 42
42 0 2 0 0 0 0 0 0 3 4 2 1]•lt2 43
43 0 3 0 0 0 0 0 0 D 5 2 1] ra s 44
44 0 3 0 0 1 0 0 0 D 5 2 Z] ready5 45
45 0 3 0 0 0 0 0 0 5 5 2 1] mozd2 46
46 0 2 0 0 0 0 0 0 3 5 2 1 xmit2 47
47 0 3 0 0 0 0 0 0 D 6 2 1]zv6 48
46(0 3 0 0 0 1 0 0 D 6 2 1]r ady6 49
49 0 3 0 0 0 0 0 0 ,Z 6 2] moz d2 50
50 0 2 0 0 0 0 0 0 2 6 2 1]mit2 51
51 0 3 0 0 0 0 0 0 D 7 2 , 1 rv7 52
52 0 3 0 0 0 0 1 0 D 7 2] ready7 53
53 0 3 0 0 0 0 0 0 Z 7 2 1Z] oed2 54
54 0 2 0 0 0 0 0 0 X 7 2 1 xmlt2 55
55 0 3 0 0 0 0 0 0 D 8 2] rev$ 56
56 0 3 0 0 0 0 0 1 D 2 Z]r•ady8 57
57 0 3 0 0 0 0 0 0 6 8 2 1]passtk2 56
58 0 0 0 0 0 0 0 0 7 3, 2 •g]mttk3 59
59 0 0 2 0 0 0 0 0 , 3 2 Z] xmLt3 60
60 0 0 3 0 0 0 0 0 D 1 3 1 rovl 61
61 1 0 3 0 0 0 0 0 D 1 3 1]t adyl 62
62 0 0 3 0 0 0 0 0 Z 1 3 1] mO•d3 63
63 0 0 2 0 0 0 0 0 Z 1 3 1] xLt3 64
64 0 0 3 0 0 0 0 0 D 2 3 I] rc2 65
65 0 1 3 0 0 0 0 0 D 2 3 1]r ady2 66
66 0 0 3 0 0 0 0 0 , 2 3 1]mz-d3 67
67 0 0 2 0 0 0 0 0 2 2 3 1 1it3 66
68 0 0 3 0 0 0 0 0 D 4 3] rov4 69
69 0 0 3 1 0 0 0 0 D 4 3 Z] eady4 70
70 0 0 3 0 0 0 0 0 Z 4 3 I] mord3 71
71 0 0 2 0 0 0 0 0 2 4 3 1]±mt3 72
72 0 0 3 0 0 0 0 0 D 5 3 I] rvs 73
73 0 0 3 0 1 0 0 0 D 5 3 1]eadyS 74
74 0 0 3 0 0 0 0 0 Z 5 3 1]a ored3 75
75 0 0 2 0 0 0 0 0 Z 5 3 1 m3Lt3 76
76 0 0 3 0 0 0 0 0 D 6 3 1 zov6 77
77 0 0 3 0 0 1 0 0 D 6 3 1]eady6 78
78 0 0 3 0 0 0 0 0 Z 6 3 I] maO d3 79
79 0 0 2 0 0 0 0 0 Z 6 3 1]-lt3 s0
80 0 0 3 0 0 0 0 0 D 7 3 I rov7 61
81 0 0 3 0 0 0 1 0 D 7 3 1]r ady7 02
82 0 0 3 0 0 0 0 0 Z 7 3 1] more.3 83
83 0 0 2 0 0 0 0 0 Z 7 3 1 xmit3 64
84 0 0 3 0 0 0 0 0 D 8 3] ravw 65
65 0 0 3 0 0 0 0 1 D 8 3 1 ready$ 86
86 0 0 3 0 0, 0 0 0 Z 6, 3 1] pass.. tk3 87
87 0 0 0 0 0 , 0 0 0 T 4 ,3 Z3] gotk4 86
88 0 0 0 2 0 0 0 0 W 4 3 Z ,3 -t4 69
89 0 0 0 3 0 0 0, 0 D 1 4 1] wovl 90
90 1 0 0 3 0 0 0 0 D 1 4 1 readyl 91
91 0 0 0 3 0 0 0 0 , 1 4 1 m•rd.4 92
92 0 0 0 2 0 0 0 0 Z 1 4] i •mlt4 93
93 0 0 0 3 0 0 0 0 D 2 4 1 1 rcv2 94
94 0 1 0 3 0 0 0 0 D 2 4 1 r•ady2 95
95 0 0 0 3 0 0 0 0 E 2 4 1] mozro4 96
96 0 0 0 2 0 0 0 0 Z 2 4 XZ •it4 97
97 0 0 0 3 0 0 0 0 D 3 4] rav3 96
98 0 0 1 3 0 0 0 0 D 3 4 1Z r ady3 99

99 0 0 0 3 0 0 0 0 Z 3 4] mored4 100
100 0 0 0 2 0 0 0 0 2 3 4] xmlt4 101
101 0 0 0 3 0 0 0 0 D 5 4 1] raS 102

129

S !

102 0 0 0 3 o10,0 0o D 5 4 15 ,IyS 103
103 (0, 0, 0, 3, 0, 0, 0, 0 , 5,4, 1jxd4 104
104 0 0 0 , o0 0 0 0,3,S,4 131t4 105
105 0 0 0 3 0 0 0 0, D 64Z z1MY 10l
106 (0 0, 0, 3, 0, 1. 0, 0,D 6,4, 1 eady 107
107 0 0 0 3 0 0 0 0,3,64, 4 mz•d4 108
108 0, 00 0 2,0,0 0 , 0 1 6 4 1 , it4 109
109 0 0 0 3 0 0 0 0, D ,7 4 1rav7 110
110 0 0 0 3 0 0 1 0 ,0 ,7,4, 1 ady7 I11
Ill (0, 0, 0, 3, 0, 0, 0, 0,3Z 7,4, 1 4 112
112 0 0 0 2 0 0 0 , 0 1 7 4 1 =1tt4 113
113 0 0 0 3 0 0 0 0 D, 8 41 4 raw 114
114 0 0 0 3 0 0 0 1 D 8 4 1 od 215

115 0 0 0 3, 0, 0, 0, 0o , o , 41pass tk4 11
116 (0, 0, 0, 0 0, 0. 0 , 0 ,!, 5 , 4 3 got fkS 117
117 0 0 0 0 2 0 0 0 , 5 4 mltlt5 118
118 0 0 0 0 3 0 0 0, D 1,5 X zvl 119
119 1 0 0 0 3 0 0 0, D 1 5 XZ e. yl 120
120 0 0 0 0 3 0 0 0 , 1 5 ZJ mozd.5 121
121 0 0 0 0 2 0 0 0 , 15 X]miltS 122
122 0 0 0 0 3 0 0 0, D 2 5 X] rv2 123
123 0 1 0 0 3 0 0 0, D 2 5 5 !. dy2 124
124 0 0 0 0 3 0 0 0 ,3 2 5 X]omoz. 125
125 0 0 0 0 2 0 0 0 ,Z 2 5 1] t5 126
126 0 0 0 0 3 0 0 0, D 3 5 X] zv3 127
127 0 0 1 0 3 0 0 0, D 3 5 X] rady3 128
128 0 0 0 0 3 0 0 0 1 3 5] mord5 129
129 0 0 0 0 2 0 0 0 , 3 5 1 -- 1t5 130
130 0 0 0 0 3 0 0 0 D 4 5] rcv4 131
131 0 0 0 1 3 0 0 0 D 4 5 Xready4 132
132 0 0 0 0 3 0 0 0 , 4 ,5 X a]red.5 133
133 0 0 0 0 2 0 0 0 It 4 5 1] -•t5 134

13. 0 0 0 0 3 0 0 0 D ,6 5 X rcv6 135
135 (0 0 0 0 3 1 0 0 D 06 5 X]eady6 136
136 0 0 0 0 3 0 0 0 , 6 5 X]uOnredS 137
137 0 0 0 0 2 0 0 0 a3 ,6 5 X] t5 138
138 0 0 0 0 3 0 0 0 D 7 5 X rcv7 139
139 0 0 0 0 3 0 1 0 D 7 5XS,)ready7 140
140 0 0 0 0 3 0 0 0 I 7 5 X]5orodS 141
141 0 0 0 0 2 0 0 0 1 7 5 X xm1t5 142
142 0 0 0 0 3 0 0 0 D 8 5 Z1]- 143
143 0 0 0 0 3 0 0 1 0 8 5 Z] rady 144
144 0 0 0 0 3 0 0 0 , 8, 5 X pa tk5 145
145 0 0 0 0 0 0 0 0, T , 5 Z getKtkf 146
146 0 0 0 0 0 2 0 0 36 56]1 xLt6 147
147 0 0 0 0 0 3 0 0 D 1 ,6 X rcvl 148
146(1 0 0 0 0 3 0 0 D 1 6 I readyl 149
149 0 0 0 0 0 3 0 0 3 1 6 X mrozdE 150
150 0 0 0 0 0 2 0 0 2 1 6 1]xmt6 151
151 0 0 0 0 0 3 0 0 D 2 6 Z] rcv2 152
152 0 1 0 0 0 3 0 0 D 2 6 ZX eady2 153
153 0 0 0 0 0 3 0 0 , 2 6 X] moredl 154
154 0 0 0 0 0 2 0 0 1 2 6 1]•Lt6 155
15S 0 0 0 0 0 3 0 0 D 3 6 Z rcv3 156
156(0 0 1 0 0 3 0 0 D 3 6 X]rady3 157
157 0 0 0 0 0, • 0 0, 3 6 1] aoed6 158
158 0 0 0 0 0 2 0 0 X 3 36 Z1 mit6 159
159 0 0 0 0 0 3 0 0 D 4 6 XZ]r 4 1I0
160 0 0 0 1 0 3 0 0 D 4 6 1 zeady4 161
161 (0 0 0 0 0 3 0 0 3 4 1]mordG 162
162 0 0 0 0 0 2 0 0 2 4 6 Z1] tt 163
163 0 0 0 0 0 3 0 0 D 5 6 XI z c] 164
164 0 0 0 0 1 3 0 0 D S 6 1 []adyS 165
165 0 0 0 0 0 3 0 0 a 5 56 w]omreS 166
166 (0 0 0 0 0 2 0 0 a 5 S I ,mlti 167
167 0 0 0 0 0 3 0 0 D 6 Z] rcv7 168
168 (0 0 0 0 0 3 1 0 D 7 6 1]eady7 169
169(0 0 0 0 0 3 0 0 Z 7 ,6 1j] mord 170
170 0 0 0 0 0 2 0 0 2 7 6 X mintt 171
171 0 0 0 0 0 3 0 0 D 18 X6].v 172
172 0 0 0 0 0 3 0 1 D 8 6 1 3 ready$ 173
173 0 0 0 0 0 3 0 0 , i86 Z] pastk6l 174

130

174 0 0 0 0 0 0 0 0 T 7 6 9 1 g t_ý7 175
175 0 0 0 0 0 0 2 0 3 7 6 2 MW 1at 76
1 76 0 0 0 0 0 0 "3 0 D 1 7 1] wl 177

S177 1 0 0 0 0 0 3 0 D 1 7 X] eadyl. 278
i178 0 0 0 0 0 0 3 0 9 1 7 1] ooled 179

179 0 0 0 0 0 0 2 0 9 1 7 1 msr7 too
180 0 0 0 0 0 0 3 0 D 2 7 1]av lei8
181 0 1 0 0 0 0 3 0 D 2 7 1 zleady2 142

182 0 0 0 0 0 0 3 0 3 2 7 1] aoed7 143

183 0 0 0 0 0 0 2 0 2 2 7 X] =Lt7 104
164 0 0 0 0 0 0 3 0 D 3 7 1 z'mr3 185
185 0 0 1 0 0 0 3 0 D 3 7 1] eadyr3 186
1896 0 0 0 0 0 0 3 0 1 3 7 1 mored7 187
187 0 0 0 0 0 0 2 0 3 3 7 X] i•t7 is$
180 0 0 0 0 0 0 3 0 D 4 7 X] z'€4 log)
189 0 0 0 1 0 0 3 0 D 4 7 X] eady4 290
190 0 0 0 0 0 0 3 0 3 4 7 1 moL-ed7 191
191 0 0 0 0 0 0 2 0 2 4 7 1] mit7 192
192 0 0 0 0 0 0 3 0 D 5 7 1] •5 193
193 0 0 0 0 1 0 3 0 D 5 7 i] oady5 194
194 0 0 0 0 0 0 3 0 2 5 7 1] ozed7 195
195 0 0 0 0 0 0 2 0 R 5 7 1] uLt7 196
196 0 0 0 0 0 0 3 0 D 6 7 X zcv6 197
197 0 0 0 0 0 1 3 0 D 6 7 1] eadyG• 198
198 0 0 0 0 0 0 3 0 Z 6 7 1] ozrd7 199
199 0 0 0 0 0 0 2 0 Z[i 7 1] mit7 200
200 0 0 0 0 0 0 3 0 D 1 7 X raw$8 201
201 0 0 0 0 0 0 3 1 D 8 7 1 rezady$ 202
202 0 0 ,0 0 0 0 3 ,0 2 8 ,7 1] pass tk7 203
203 0 0 ,0 0 0 0 0 ,0 T 8 ,7 R] get-tk8 204
204 0 0 0 0 0 0 0 2 R 8 7]X]]m11t 205
205 0 0 0 0 0 0 0 3 D 1 8 X ra-wl 206
206 1 0 0 0 0 0 0 :3 D 1 8 1] eadyl 207
207 0 0 0 0 0 0 0 3 2 1 8 1] Ored$8 204
208 0 0 0 0 0 0 0 2 3 1 8 X miL•tt 209
209 0 0 0 0 0 0 0 3 D 2 8 1 :rc2 210
210 0 1 0 0 0 0 0 3 D 2 8 1] Leady2 211
211 0 0 0 0 0 0 0 3 R 2 6 1 3 moredS 212
212 0 0 0 0 0 0 0 2]2 2 8 1 zmit$l 213
213 0 0 0 0 0 0 0 3 D 3 8 1] aV3 214
214 0 0 1 0 0 0 0 3 D 3 8 1 zeaSdr3 215
215 0 0 0 0 0 0 0 3 1 3 8 1 more"8 214;
216 0 0 0 0 0 0 0 2 R 3 0 1 =i•mt$ 217
217 0 0 0 0 0 0 0 3 D 4 8 1 zra4 218
218 0 0 0 1 0 0 0 3 D 4 8 1] eady4 219
219 0 0 0 0 0 0 0 3 1 4 8 1 mozrd8 220
220 0 0 0 0 0 0 0 2 1 4 8 1] mstll 221
222 0 0 0 0 0 0 0 3 D 5 8 1 j rawS 222
222 0 0 0 0 1 0 0 3 D S 8 1 zoadyS 223
223 0 0 0 0 0 0 0 3 1 5 8 1 moredS 224
224 0 0 0 0 0 0 0 2 1l 5 8 1] mitll 225
225 0 0 0 0 0 0 0 3 D 6; 8 X] :v• 226S
226 0 0 0 0 0 1 0 3 D 6; 9I X zoadyf; 227
227 0 0 0 0 0 0 0 3 1 6 8 1 mom"U 220
228 0 0 0 0 0 0 0 2 1 6S 8 1] -- tl 229
229 0 0 0 0 0 0 0 3 D 7 8 1) av7 230
230 0 0 0 0 0 0 1 3 D 7 8 1] e-ey7 231
231 0 0 0 0 0 0 0 3 1 7 1 pas •s tkS 232
232 0 0 0 0 0 0 0 0 7 1 8 9s gtjkl 233
2:33 2 0 0 0 0 0 0 0 1 1 8 X] asl 234
234 0 0 0 0 0 0 0 0 7 2 1 a get_ ti2 235
235 0 2 0 0 0 0 0 0 ![2 1 X]as*2 234•
236 0 0 0 0 0 0 0 0 2 :3 ,2 a] gt tk3 237
237 0 0 2 0 0 0 0 0 1 3 ,2 x] a&3 2:34
230 0 0 0 0 0 0 0 0 7 4 ,3 3 get_tk4 239)
239 0 ,0 0 2 0 0 0 0 2 4 ,3 , a pass4 240
240 0 ,0 0 0 0 0 0 0 7 5S 4 ,] gottk5 241
242 0 0 0 0 2 0 0 ,0 I2 5 4 a] aiess 242
242 0 0 0 0 0 0 0 ,0 ? 6; S a] st_ýtkg 243
243 0 0 0 0 0 2 0 ,0 I2 6; 5 Z] as@ 244
244 0 0 0 0 0 0 0 ,0 7 7 6 2 gmttiW 243
245 0 0 0 0 0 0 2 ,0 1I 7 6 2] aes7 246

246 0,0, 0,0,0,0, 0, 0,1,1,7,Z wttk* 247
247 0 0 0 0 0 0 , , 1, 8 7 3 p~as 248
246 0 0 0 0 0 0 0, 0,! 1 8 , got , i 249
249 2 0 0 0 0 0, 0, 0 Z 1,8, Z pal 250
250 0 *0 *0, 0 *0 *0, 0 0 0,! 2,1,1 got tk2 2521
251 0 2 0 , 0,0,0, 0 ,I , 2 1 Zlpa 2 252
252 (0, 0, 0, 0, 0 0, 0, 0,!T 32,Z gottk 2533
253 0 0 2 0 0 0 0 0 , 3, 2 Z)pasa3 254
254 0 0 0 0 0 0 0, 0,! 4 3 Z ogsttk,4 255
255(0,0,0,2,00,0,0, 2 OI 4 3 Z paae 256
256 0 0 0, 0 0 , 0 0,! 5,4, •gs.tkS 257
257 [0, 0, 0, 0, 2, 0, 0, 0Z5, 4 ZpaasS 258
258 (0, 0, 0, 0, 0, 0, 0, 0,!, 6SZst~tk 259
259 (0, 0, 0, 0, 0, 2, 0, 0,Z6,5, Z]pa 260
260(0 0 0 0 0 0 0, 0, T ,7 6 got tk7 261
261 0 0 0 0 0 0 2, 0 ,, 7 ,] pada7 262
262 0 0 0 0 0 0 0, 0, T ,8 7] gttk 247

SU•MTAY OW RPC1AUZL'y AmAILYSxs (UINJYSIS COWL'9lZD)

Number of states gewerated :263
Number of states analyzed :263
number of deadlocks : 0

0332C0!ID TRANSZITOWS

132

LIST OF REFERENCES

1. Lundy, G. M., and Miller, R. E., "Specification and Analysis of a Data Transfer Proto-
col Using Systems of Communicating Machines," Distributed Computing, Springer -
Verlag, December 1991.

2. Lundy, G. M., and Miller, R. E., "Specification and Analysis of a General Data Trans-
fer Protocol," Tech Rep GIT-88/12, School of Information and Computer Science,
Georgia Institute of Technology, Atlanta, GA 1988.

3. Lundy, G. M., and Akyildiz I. F., "A Formal Model of the FDDI Network Protocol,"

Europa Proceedings of the EFOCILAN'91, pp. 201 -205, London, 1991.

4. Lundy, G. M., "Specification and Analysis of the Token Bus Protocol Using Systems
of Communicating Machines," IEEE Systems Design and Networks Conference, San-
ta Clara, CA, 1990.

5. Lundy, G. M., and Luqi, "Specification of Token Ring Protocol Using Systems of
Communicating Machines, "IEEE Systems Design and Networks Conference, Santa
Clara, CA, 1989.

6. Lundy, G. M., and Miller, R. E., "Analyzing a CSMA/CD Protocol Through a Systems
of Communicating Machines Specification (submitted for publication).

7. Raiche, C., "Specification and Analysis of The Token Ring Protocol," M. S. Thesis,
Department of Computer Science, Naval Postgraduate School, Monterey, CA, 1989.

8. Rothlisberger, M. J., "Automated Tools for Validating Network Protocols," M. S. The-
sis, Department of Computer Science, Naval Postgraduate School, Monterey, CA,
September 1992.

9. Peng, Wuxu and Puroshothaman, S., "Data Flow Analysis of Communicating Finite
State Machines," ACM Transactions on Programming Languages and Systems,
Vol.13, No. 3, July 1991.

10. Rudin, H., "An Informal Overview of Formal Protocol Specification," IFIP TC 6th In-
ternational Conference on Information Network and Data Communication, Ronneby
Brunn, Sweden, 11-14 May 1986.

11. Vuong, S. T., and Cowan, D. D., "Reachability Analysis of Protocols with FIFO Chan-
nels," ACM SIGCOMM, University of Texas at Austin, March 8-9 1983.

133

12. Gouda, M. G., "An Example for Constructing Communicating Machines by Stepwise
Refinement," Proc. 3rd IFIP WG 6.1 Int. Workshop on Protocol Specification, Testing,
and Verification, North-Holland Publ., 1983.

13. United States, Department of Defense, "Reference Manual for the Ada Programming
Language," ANSI/MIL-STD- 1815A- 1983.

14. Lundy G. M., "Modeling and Analysis of Data Link Protocols," TN86-499.1, Tele-
communications Research Laboratory, GTE Laboratories, 40 Sylvan Road, Waltham,
MA, January 1986.

15. Charbonneau, L. J., "Specification and Analysis of The Token Bus Protocol," M. S.
Thesis, Department of Computer Science, Naval Postgraduate School, Monterey, CA,
1990.

16. Holzmann, Gerard J., "Design and Validation of Computer Protocols," Prentice Hall
Publishing Co., 1991.

17. Aggarwal S., Barbara D., and Meth K. Z., "SPANNER: A Tool for the Specification,
Analysis, and Evolution of Protocols," IEEE Transactions on Software Engineering,
Vol. SE-13, No. 12, December 1987.

134

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Dudley Knox Library, Code 052 2
Naval Postgraduate School
Monterey, CA 93943

3. Chairman, Code 37 CS
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

4. Dr. G. M. Lundy, Code CS/Ln
Assistant Professor, Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

5. Dr. Man-Tak Shing, Code CS/Sh
Associate Professor, Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

6. Dr. Mohamed Gouda
Department of Computer Science
University of Texas at Austin
Austin, TX 78712

7. Dr. Raymond E. Miller
Department of Computer Science
A. V. Williams Bldg.
University of Maryland
College Park, MD 20742

8. Dr. Krishan Sabnani
AT&T Bell Labs
Room 2C-218
Murray Hill, NJ 07974

135

9. Dcniz Kuvvederi Komutanligi
Personel Daire Baskanligi
Bakanlikiar, Ankara / TURKEY

10. Golcuk Tersanesi Komnutanligi1
Golcuk, Kocacli / TURKEY

11. Deniz Harp Okulu Komutanligi1
81704 Tuzla, Istanbul / TURKEY

12. Taskizak Tersanesi Komutanligi
Kasimpasa, Istanbul / TURKEY

13. LTJG Zeki Bulent Bulbul1
Merkez Bankasi Evieni
Ozgurler Sok. No. 9
Kalaba, Ankara / TURKEY

136

